
PERFORMANCE EVALUATION OF SHARED-MEMORY PROTOCOLS

FACING GRAPH DATA

BY

ALIREZA NAZARI, B.S.

A thesis submitted to the Graduate School

in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE

Major Subject: ELECTRICAL ENGINEERING

NEW MEXICO STATE UNIVERSITY

LAS CRUCES, NEW MEXICO

JUNE 2014

“Performance Evaluation of Shared-Memory Protocols Facing Graph Data,” a thesis prepared

by Alireza Nazari in partial fulfillment of the requirements for the degree Master of Science,

has been approved and accepted by the following:

Linda Lacey

Dean of the Graduate School

Jeanine Cook

Chair of the Examining Committee

Date

Committee in charge:

 Dr. Jeanine Cook, Chair

 Dr. David Voelz

 Dr. Jonathan Cook

PERFORMANCE EVALUATION OF SHARED-MEMORY PROTOCOLS

FACING GRAPH DATA

BY

ALIREZA NAZARI, B.S.

MASTER OF SCIENCE

NEW MEXICO STATE UNIVERSITY, 2014

Dr. Jeanine Cook, Chair

Memory performance has not improved at the same pace as processor

performance. This fact has led to a tendency toward integrating caches in processors,

making use of multiple small, high speed memories. To increase the performance of

these caches, algorithms and hardware are organized to take advantage of spatial and

temporal locality.

In scenarios with multiple processing units, there is additional complexity

since some data has to be shared among the various processing units. A protocol is

required to keep this shared data coherent. MESI protocol and its variants are the

most common cache coherency protocol in multicore systems.

Graph applications are known for having low locality, and this lack of locality

could be a major source of performance loss in these applications as the number of

threads increases. To quantify performance loss due to memory transfer, two graph

benchmarks, Graph500 and SSCA2, and one regular parallel benchmark, HeatPlate,

were chosen. First, the performance loss was characterized by an instrumentation

tool, PGOMP. Then, the MARSSx86 simulator was used to directly measure the

MESI overhead. Finally, results analysis showed that MESI overhead was the source

of up to 80 percent of performance loss in these graph benchmarks.

DEDICATION

To my parents, brother and sister

for their endless love, support and encouragement

ACKNOWLEDGMENTS

I extend my gratitude to my academic advisor Dr. Jeanine Cook for her

inspiration, continuous support, and timely guidance throughout my studies at New

Mexico State University. I am fortunate to be a part of her research team, which

helped me to grow not only in academics but as a complete individual. I owe my

deepest gratitude for her generous financial support for my studies. I would also like

to thank Dr. Waleed Alkohlani for his willingness to invest a lot of time answering

questions and discussing research. Without his guidance and wisdom, this research

would not have been possible.

I am thankful to my exam committee, Dr. Voelz and Dr. Jonathan Cook, for

their contributions in editing this thesis, for their words of encouragement, and for

their suggestions for improvement.

I am indebted to all my colleagues and friends in the ACAPS Lab for

providing a stimulating and fun environment for learning and growth. I would like to

convey my deep gratitude to my dearest family and my friends for all of their help,

love, and support.

VITAE

1989 Born in Isfahan, Iran

2010 Undergraduate Intern

 IT Department, Bank of Mining & Industry, Tehran, Iran

2007-2011 B.S., Computer Engineering-Hardware

Shahed University, Tehran, Iran

2012-2014 Research Assistant

 Advanced Computer Architecture, Performance and Simulation

 Laboratory (ACAPS), NMSU, USA

2012-2014 M.S., Electrical Engineering

 New Mexico State University, NM, USA

i

TABLE OF CONTENTS

DEDICATION ...v

ACKNOWLEDGMENTS ... vi

TABLE OF CONTENTS ... i

LIST OF TABLES ... iv

LIST OF FIGURES ...v

1 INTRODUCTION ...1

1.1 MOTIVATION ..2

2 BACKGROUND ...5

2.1 MEMORY COHERENCY ..5

2.2 PROTOCOL STRATEGIES ...6

2.2.1 PROTOCOL IMPLEMENTATION ... 7

2.2.2 IMPLEMENTATION OF SNOOPY PROTOCOL 10

2.2.3 SNOOPY LIMITATIONS AND DIRECTORY SCHEME 13

2.3 REVISITING AMDAHL’S LAW AND PERFORMANCE

BOTTLENECKS ...15

2.3.1 APPLICATION-CENTRIC BOTTLENECKS .. 17

2.3.2 MACHINE DEPENDENT BOTTLENECKS .. 18

2.3.3 APPLICATION-ARCHITECTURE HYBRID BOTTLENECKS 19

2.4 COHERENCY PROTOCOL OVERHEAD ..22

3 RELATED WORKS ..26

3.1 QUANTIFYING SPATIAL LOCALITY..26

ii

3.2 OVERHEAD CHARACTERIZATION ..30

3.3 PERFORMANCE AND OVERHEAD OF GRAPH APPLICATIONS34

3.4 SUMMARY AND RESEARCH CONTRIBUTION35

4 METHODOLOGY ..37

4.1 QUALIFYING BASELINE PERFORMANCE AND OVERHEAD37

4.2 SYSTEM VS SIMULATOR SPECIFICATION ...40

4.3 MARSSX86 STRUCTURE ...42

4.3.1 CORE MODEL ... 43

4.3.2 LOAD/STORE IN SIMULATOR VS. REALITY 47

4.4 COHERENCY OVERHEAD MEASUREMENTS ..57

4.5 BENCHMARKS UNDER EXAMINATION..58

4.6 SUMMARY ...61

5 RESULTS ..62

5.1 LOCALITY CHARACTERIZATION ..62

5.2 VALIDATION AND SIMULATOR ACCURACY63

5.3 INSTRUMENTATION TOOL RESULTS ...68

5.4 DIRECT MEASUREMENT OF COHERENCY PROTOCOL

OVERHEAD..70

5.5 ANALYSIS OF INTERCONNECT ..73

5.5.1 WRITE TO SHARED DATA .. 76

5.6 PERFORMANCE RESULTS FROM SIMULATION79

5.7 FUTURE WORK ...84

iii

5.8 SUMMARY ...85

6 CONCLUSION ..86

APPENDIX A: MARSSX86 MACHINE CONFIGURATION FILE89

APPENDIX B: MARSSX86 CORE CONFIGURATION FILE95

APPENDIX C: TOTAL EXECUTION CYCLES IN SIMULATOR106

REFERENCES ..109

iv

LIST OF TABLES

Table 1- Real-world platform specification .. 41

Table 2- Difference between real-world and simulated Intel XEON 5620 42

Table 3– Memory hierarchy in Intel Xeon E7 2800 and MARSS 50

Table 4- Error of Cache Miss Rate for Graph500 ... 66

Table 5- Error of Cache Miss Rate for HeatPlate ... 66

Table 6- Error of Cache Miss Rate for SSCA2... 66

Table 7- Contribution of barrier and lock to performance loss in actual machine 69

Table 8- Contribution of MESI overhead to performance loss in simulator 83

v

LIST OF FIGURES

Figure 1- SMP Machine .. 8

Figure 2- ccNUMA Machine .. 9

Figure 3- MESI finite machine ... 11

Figure 4- MOESI finite machine .. 13

Figure 5- Directory-based scheme .. 15

Figure 6- MARSS general schema ... 43

Figure 7- Micro architecture of PTLsim Out-of-Order core ... 45

Figure 8- Core Schema in Westmere .. 47

Figure 9- Core interconnects ... 52

Figure 10- Westmere-EP (6-cores) on-chip interconnect ... 53

Figure 11- Westmere core off-chip interconnects .. 54

Figure 12- QPI point-to-point connections ... 55

Figure 13- Spatial locality metric ... 63

Figure 14- Error in total execution cycles... 65

Figure 15- Average percent of error for each cache level .. 67

Figure 16- Graph500 MESI overhead ... 72

Figure 17- HeatPlate MESI overhead ... 72

Figure 18- SSCA2 MESI overhead... 73

Figure 19- Delay of read invalidated shared in Graph500 .. 75

Figure 20- Delay of read invalidated shared in SSCA2 .. 75

Figure 21- Delay of read invalidated shared in HeatPlate .. 76

vi

Figure 22- L1 invalidation delay in write to shared data .. 78

Figure 23- L2 invalidation delay in write to shared data .. 78

Figure 24- Measurement of MESI overhead in Graph500 from simulator 81

Figure 25- Measurement of MESI overhead in SSCA2 from simulator 81

Figure 26- Measurement of MESI overhead in HeatPlate from simulator 82

Figure 27- Graph500 total execution cycles in MARSSx86 .. 106

Figure 28- HeatPlate total execution cycles in MARSSx86 ... 106

Figure 29- SSCA2 total execution cycles in MARSSx86 .. 107

Figure 30- Graph500 MESI Overhead .. 107

Figure 31- HeatPlate MESI Overhead .. 108

Figure 32- SSCA2 MESI overhead... 108

1

1 INTRODUCTION

Processor performance has been improving at roughly 60% per year. Memory

access time, however, has improved by less than 10% per year [1]. This uneven

development in processor and memory speed has introduced an issue known as the

processor-memory performance gap or memory wall [2]. To alleviate performance

degradation due to this issue, out-of-order processors and multilevel caches have been

introduced [1]. Out-of-order and speculative instruction execution attempt to hide

memory latency by keeping the pipeline full with instructions that are independent of

stalled memory instructions. The overhead of these techniques is more complexity and

power consumption in the processing unit. Conversely, multilevel cache hierarchy

provides a fast but small on-chip memory, which means a smaller miss penalty than

memory access time, while hit cost is low. Consequently, we tend to keep the data that

we are going to use in the near future in the highest possible cache level, near the

processor. Taking limited cache capacity into account, locality plays an important role in

faster computation.

In a multiprocessing system scenario, several processing units are integrated on a

single chip or connected by a network. Each processor has its own private cache

hierarchy and a shared cache at the lowest level of hierarchy. In this scenario, keeping

data coherent between all caches and main memory is a significant issue. A coherency

protocol should enable processors to communicate with each other and inform each other

2

about the most recent status of data. MESI and its variants are the most common

coherency protocols which support write-back cache.

The cost of this guaranteed coherency of the data includes overhead on the

interconnect and memory hierarchy, as well as an additional logic that implements the

coherency protocol. This overhead affects memory operation performance (average

access time), memory interconnect traffic, and also energy consumption. Most

importantly, this overhead limits the perfect scalability and speedup of the system.

Moreover, since the whole idea behind using a cache hierarchy is to take advantage of

spatial/temporal locality, a low level of locality in a particular workload exacerbates the

coherency overhead. In Section 3.1, temporal and spatial locality is discussed in more

detail. Also, more detailed information on bottlenecks, which limit scaling and speedup,

is provided in section 2.3.

1.1 MOTIVATION

In computer science and mathematics, graphs are abstract data structures that

model structural relationships among objects. They are now widely used for data

modeling in application domains for which identifying relationship patterns, rules, and

anomalies are useful. These domains include the web graph, social networks, the

Semantic Web, knowledge bases, protein-protein interaction networks, and

bibliographical networks, among many others. The ever-increasing size of graph-

3

structured data for these applications creates a critical need for scalable systems which

can efficiently process extremely large amounts of data.

Considering the large execution time of graph applications and the demand for

time and energy performance, the identification of performance bottlenecks is important.

One of the inherent attributes of graph applications is the lack of the data locality.

Consequently, a large amount of inter-processor data transfer is required to keep the data

coherent. In this work, we quantify overhead associated with coherency in graph-based

applications using a simulation. We attempt to show that a significant portion of total

execution time is spent on coherence and coherence-related events, particularly for graph

applications that are characterized by little spatial and temporal locality. In Section 2.1

we focus on the MESI protocol in more detail and see why it forces overhead to parallel

applications.

Chapter 3 provides a comprehensive literature review on the application

performance characterization of parallel application and overhead characterization. Then,

in Section 3.3, we focus on literatures which attempt to characterize the performance of

graph applications, and find that the literature does not provide enough profiling data and

insight about performance characterization. An especial gap is the role of coherency

protocol in poor speedup of graph applications. Therefore, we tried to provide more

insight about performance bottlenecks and their effects on scaling by quantifying the

influence of coherency protocol influence on speedup. In Chapter 4 , we define scaling

4

overheads in general and coherency overhead. Then, we explain why we have to use an

accurate cycle simulator to measure coherency overhead. The methodology and more

specific details about the simulator are discussed. The real-world machine and the

simulator are fully explained, and the two are compared to show their commonalities and

differences. In Section 4.4, our coherency overhead measurement in the simulator is fully

explained. Also, the examined graph benchmarks are briefly described in section 4.5.

Finally, the achieved results are presented in Chapter 5 . This chapter starts with

the locality evaluation of benchmarks. We use the metrics described in Section 2.1 to

show that the examined graph benchmarks have a low level of locality. In Section 5.3, an

instrumentation tool, PGOMP, is used to profile barrier, critical section, lock, and

coherency protocol overhead. Then, in section 5.4, coherency protocol overhead is

directly measured, characterized, and compared to PGOMP results. We show how many

cycles are wasted by the MESI protocol and what fraction of wasted speedup is due to

this overhead. In Chapter 6 , the conclusion is made and more applications of this

analysis are discussed.

5

2 BACKGROUND

2.1 MEMORY COHERENCY

The existing techniques of increasing instruction level parallelism (ILP) are no

longer able to track the performance and speed that Moor’s Law suggests. Energy, heat,

and wire delay issues are the obstacles that obstruct the expected performance track [3].

Therefore, processor vendors are now focusing on thread-level parallelism (TLP) by

designing chips with multiple processors, known as Multicore or Chip-level

Multiprocessors (CMP). By extracting higher-level TLP on multicores, performance can

continue to improve. However, managing the technology issues, which are faced by

increasing the performance of conventional single-core designs, is a problem [4]. A brief

look at multiprocessor development trends shows an exponential increase in on-chip

cores. This fast growth, combined with the growth rate of Moore’s Law, suggests the

possibility that thousand-core CMPs may be produced in the near future [5].

The shift toward multicore processors depends on parallel software and the

shared-memory model to achieve continued exponential performance gains. In the

shared-memory model, all processors access the same physical address space. Since each

processor has its own private cache hierarchy, copies of the same data are present in

different caches at the same time. Therefore, a major problem in multiprocessors is

providing a consistent view of memory for each processor. The cache coherence problem

is a critical, performance-sensitive design point for supporting the shared-memory model.

6

Cache coherence mechanism should take care of (i) communication between processors

and (ii) how the data transfers between the processors, caches and memory. Assuming the

shared memory programming model remains prominent, future workloads will depend

upon the performance of the cache coherent memory system [4]. Cache coherence

protocol is a distributed algorithm, which is used to maintain coherency among all of the

data copies. Various cache coherency protocols have been introduced [6, 7, 8]. The major

difference between these protocols is in the performed action on a write.

2.2 PROTOCOL STRATEGIES

Cache coherency protocols can implement two different strategies depending on

how each processor informs the other processors about modifications in its local cache. It

can either invalidate the stale data and wait for next read to update, or send an update

instantly. Furthermore, the protocol should implement a writing policy. In write through,

memory is updated whenever a processor performs a write. In write-back, the memory

can be updated in two ways: first, when another processor reads the same cache block;

and second, when a processor with the only valid copy of the block replaces it. The

second condition happens when the cache needs to evict the cache block. Making a

correct decision about strategy can affect performance dramatically. The write-back

invalidate approach is the mainstream approach in cache coherency protocols, but since

the best approach depends on application, it is not always the best solution.

7

2.2.1 PROTOCOL IMPLEMENTATION

In every read/write access, a permission should be checked to see whether a cache

block is accessible for that memory operation or not. At any point in logical time, the

permissions for a cache block can allow either a single writer or multiple readers. This

permission mechanism is implemented by a set of cooperating finite state machines. So,

for each defined access granularity, the hardware-implemented finite state machine

checks certain conditions and performs the required action to keep that granularity

coherent. The appropriate action is selected based on (i) issued memory operation and (ii)

the state of the machine. The cache coherence is implemented in two schemes, snoopy

and directory-based. To explain the reason behind the existence of these two schemes,

understanding about different classes of multiprocessors is required.

Symmetric Multiprocessors (SMP): In a SMP machine, the access latency of all

memory space is the same (Figure 1). A multicore is an SMP system in which every core

has access to the IO and memory and is treated equally by one common OS instance.

Communication between caches and memory is achieved by using a broadcast

mechanism.

8

Figure 1- SMP Machine

Non-Uniform Memory Access (NUMA): In a NUMA machine, the memory access

time depends on the memory location relative to the processor (Figure 3). As an

extension to this definition, ccNUMA is a NUMA approach that takes advantage of

coherent caches. An implemented Distributed Shared Memory (DSM) machine provides

a single logical address space for all processors, as well as guaranteed coherent cache.

9

Figure 2- ccNUMA Machine

In an SMP processor, assumption is visible traffic for each core. This means

coherency messages are sent by broadcasting on the bus. By utilizing this feature,

handling the protocol requires fewer hardware resources and can be implemented with

relatively lower cost and space. Each core snoops the interconnect network, and changes

the current state of state-machines based on the received messages. Obviously cores

ignore a message if the corresponding memory block is not in their cache. This method is

called snoopy cache.

In DSM systems, processors (each processor can be multicore SMP) connect to

each other by an inter-processors network. This network is a scalable network that uses

multiple components. So, by broadcasting coherency messages on the network, the

performance plunges. To have a direct access to take each memory block location instead

10

of broadcasting, an additional logic unit is required. This unit is called directory. In larger

scales of on-chip processors, a combination of snoopy and directory-based approaches is

used [9, 10]. This combination takes advantage of the lower request latency associated

with snoopy protocol and the bandwidths savings associated with directory-based

protocols. The decision between these two protocols is made in real-time based on recent

network statistics.

2.2.2 IMPLEMENTATION OF SNOOPY PROTOCOL

The key to implementing an invalidate protocol using a snoopy scheme is the use

of a broadcast medium. Snooping coherence on a bus was first proposed by Goodman

[11]. To send invalidation, the core simply acquires the bus and puts the address and

invalidation command on the bus. Obviously, if the bus is busy, it acts based on the

specified communication protocol. All of the cores are snooping the bus. If the address,

which is on the bus, exists in their caches, the appropriate action will be taken; otherwise,

they ignore it. In cases where two cores are writing in the same memory reference and

they try to put an invalidation message on the bus, serialization of write is important to

guarantee program consistency. One implication forced by this serialization is that write

to a shared block cannot be completed until the bus access is acquired. Thus, a

serialization in block writing permission or serialized access to message medium should

be enforced.

11

Figure 3- MESI finite machine

The other implication in protocol is finding the most recent copy of an invalidated

block on each cache read. The data read operation faces miss because of either

invalidation or actual absence. Since the processor is constantly snooping the bus, it

easily finds that the miss is because of an invalidation request by another cache, or it

should wait for the lower memory level to reply with the data. In the invalidated block

case, the processor cancels the request to lower level and waits for the other processors,

which have the copy to reply back the correct copy. The additional complexity is between

delay time of retrieving data from L3 and private caches of the other processors.

12

Consequently, invalidation protocols have to be implemented with a write-back scheme

at the last level private cache for all processors.

The invalidation is easy to implement. An added bit shows whether the block is

dirty (invalid) or valid. The other state is when the data is shared between the cores; this

helps the core to decide about invalidation generation in case of write operation. When

the write operation happens to a shared block, the processor changes its state to modified

state and puts the invalidation command for the associated address on the bus. To avoid

unnecessary invalidation messages on the bus, an exclusive state shows if only one copy

of the data exists. This state is easily added by extra bits to the memory blocks. Snoopy

MESI protocol is the standard name of this protocol (Figure 3). A further optimization is

the addition of owner state, which distinguishes the case in which several copies exist and

the actual copy in main memory is out of date. This state avoids unnecessary write backs

in case there are other attempts to read the same address in the other cores when a core is

reading a datum that another core is modifying. This protocol is called MOESI. MOESI

state transition policy is described in Figure 4.

13

Figure 4- MOESI finite machine

2.2.3 SNOOPY LIMITATIONS AND DIRECTORY SCHEME

As the number of cores grows, or as the memory demand of each core grows, any

centralized resource on the chip can be potentially a bottleneck [1]. Even utilizing a high

bandwidth bus for current chips could not enable designers to support more than 8 to 10

cores on a chip without experiencing an exponential drop in performance. Bus bandwidth

is a bottleneck in snoopy since each coherency miss should be examine in the core.

Besides Directory-Based scheme, one approach for a larger number of cores, commonly

used in Xeon 700 and core i7, is a directory in the outermost cache (L3). This directory

explicitly keeps track of references, which are in the cores of that processor. This method

14

cannot eliminate the bottleneck due to the shared bus between L3s [24]. This scheme is

much simpler than directory-based, though.

In directory-based cache, a hardware directory unit is added to each processor.

This directory keeps the relevant information, such as which cache or sets of caches have

copies of the block, whether it is dirty or valid, etc. For implementation purposes, a bit

vector in the L3 cache keeps track of which private caches have that specific data block.

This approach is used by Intel® QuickPath Technology, which is utilized in core i7 and

Xeon [12, 13]. On its own, this solution is not scalable as a DSM system. Scalability

implies distributed directory, but in a way that searching for a block does not force

broadcasting on a network. The obvious solution is distributed directory along memory,

but a restriction is required: for each block, one and only one specific directory is used.

This scheme is shown in Figure 5 [24]. More details of this scheme are provided in many

architecture books [1, 24].

15

Figure 5- Directory-based scheme

2.3 REVISITING AMDAHL’S LAW AND PERFORMANCE BOTTLENECKS

The performance attributes are more complicated in a shared memory system.

One of the most important expected features of parallelism is performance scalability

[24]. According to Amdahl’s law, the speedup of a program using multiple processors in

parallel computing is limited by the time needed for the sequential fraction of the

program. The final speedup formula of Amdahl’s law is:

𝑆(𝑁) =
1

(1 − 𝑃) + (
𝑃
𝑁
)

Equation 1

Where P is the parallelizable fraction of program and N is the number of processor units

[24]. Considering an ideal, fully parallel application, a speedup of two is expected after a

100 percent increase in processors. Each program execution time can be broken into two

16

portions of parallel and sequential time. Execution of a program shows that even the

speedup of isolated parallel portions is not equal to the expected speedup [14]. This

means that additional overheads cause this drop in performance.

Several papers study scaling degradation due to overheads. Crovella et al. [15]

used a method called lost cycle analysis. They divided overhead into Load Imbalance,

Insufficient Parallelism, Synchronization Loss and Communication Loss. All of these

overheads are measured in a parallel FORTRAN application on a KSR1 system [16].

However, the communication loss, which is the subject of this paper, is approximated by

assigning cycle numbers [16] to misses and hits and calculation by miss and hit rate.

Recently, in a similar paper, Roth et al. [17] categorized overhead into work,

delay and distribution. In this classification, communication is under the Hardware Delay

category, and since it cannot be measured by profiling software, it is measured as the

remaining part of overhead. Roth et al. also tried to use this profiling data to improve

performance by algorithm level changes.

Kunz [18] classifies these overheads in three major categories. Equation 2 shows

that parallel execution time can be separated into two portions of actual computation and

overhead, which prohibits ideal scalability. Regardless of the machine architecture

(ccNUMA or SMP), this overhead (sequential and parallel) can be categorized in three

different groups of bottlenecks. The first group is overhead caused by the application

17

itself. Machine architecture is the cause for the second group of overhead, and the

interaction between machine and application causes the third group of overhead.

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑁 = 𝑃𝑎𝑟𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑁 + 𝑆𝑒𝑞𝑇𝑖𝑚𝑒 + 𝑃𝑎𝑟𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑁 Equation 2

We look at each bottleneck more accurately, and finally focus more on the coherency

protocol overhead, as it is the subject of this paper.

2.3.1 APPLICATION-CENTRIC BOTTLENECKS

The characteristic of implemented parallel software is potentially a bottleneck.

Although these bottlenecks might be relative to machine specifics such as memory size,

processor speed, etc., they can still be recognized as an architecture independent

bottleneck. Since these bottlenecks root in high-level algorithm restrictions, a solution is

in algorithm-level change or compiler optimization methods. Compiler methods require

very comprehensive information, and are not always possible or totally effective. We

should consider that some inherent constraints prevent the application from being

perfectly scalable. Insufficient parallelism, which leads us to Amdahl’s law for

multiprocessors, is the most obvious one. By nature, an algorithm might have a sequential

part, which is not parallelizable by any means. By implementing an algorithm, a

programmer implicitly limits the potential speedup. This is obvious, and a larger data set

means a higher level of available parallel resources, impacting the size of serial and

parallel portions of the application [18].

18

As the number of processor units increases, a scalable speedup is desired.

However, even solely for parallel portions, the algorithm might not be able to grantee the

speedup scalability. Moreover, a level of communication between processors is required.

Clearly, the algorithm and programmer determine the ratio of communication to

computation. Some other performance bottlenecks are dependence on system call and I/O

traffic, which originates in programming and the algorithm method that is used [18].

2.3.2 MACHINE DEPENDENT BOTTLENECKS

Although the communication cost is categorized as an application-centric

bottleneck, the execution of a parallel application shows a larger communication cost

than the ideal cost expected from the algorithm. The reason behind this additional cost is

the characteristics of architecture design. In most cases, performance optimization in this

level requires information about some machine-specific features. Since we are looking to

shared memory systems, block size can be a good example of reasons behind deviations

from ideal communication cost. Memory organization uses a fixed block size to transfer

memory references, simplifying access management and taking advantage of locality.

Thus, transferring a word is done in the form of a bigger block of words. In a scenario

where two processor units need the same block of memory or any resource such as page,

etc., while they actually are accessing different sets of words within block memory, false

sharing happens. False sharing can plummet the performance since it intensifies the

communication dramatically [24]. In a less clear case for a programmer, false sharing

19

happens on an OS level granularity, e.g., a page. This case occurs when disjointed sets of

data are organized in the same page. Typically, page-level false sharing occurs on pages

that hold thread-private data. The programmer solves the problem by separating unshared

data into separate pages or segments. Although the overhead is not completely omitted, it

is negligible, especially considering this fact that the programmer benefits from spatial

locality. Finding and removing false sharing is difficult to do by compiler. The location

of the bottleneck in memory depends on the input size, proposed parallel algorithm, and

OS placement decision. A proper memory system can mitigate these bottlenecks.

2.3.3 APPLICATION-ARCHITECTURE HYBRID BOTTLENECKS

This type of bottleneck is due to the interaction between software and

architecture. These bottlenecks exist in all multiprocessors, but their effect on

performance depends on the cost of the operation in hardware implementation and the

overhead of the application interface.

2.3.3.1 THREAD SYNCHRONIZATION

In a multithread program, race condition between threads causes an unexpected

and incorrect behavior. Thread synchronization mechanisms eliminate the race condition

by managing the access to the shared data. The cost of barrier varies since it depends on

the length of parallel sections across threads, and all threads should arrive to barrier

before they continue execution. Parallel-section dependencies force an overhead to the

20

program, since all the treads experience the worst execution time before their arrival to

barrier. High level parallel programming such as OpenMP implies barriers. A compiler

might be able to check the barriers to make sure if they are necessary; however due to the

complexity of such a test on barriers, which requires knowledge and changes in the high

level algorithm, other approaches such as Thread level Speculation (TLS) are usually

taken [19].

Software lock also degrades parallel performance. Wrong lock acquisition might

change the behavior of a parallel program to serial. Moreover, lock acquisition by itself

depends on the memory system, while the memory system speed in lock acquisition and

release affects this bottleneck. However, hardware overheads are often very small

compared to long critical section. A compiler might be able to detect non-critical regions

inside the locked area and do something about them to shorten the critical section. For

infrequent locks, an approach such as synchronization can be taken by the memory

system [18].

2.3.3.2 Operating System Bottlenecks

Thread scheduling is an important responsibility of an OS. This task guarantees

memory protection and the availability of resources for all processes. Scheduling

algorithms decide which thread should have the processor next. As the number of

processing units increases, more variables should be taken into account. This means more

scheduling overhead. This overhead rises even more in ccNUMA architectures because

21

scheduling and placement of threads is very critical in ccNUMA system and depends on

more variables, such as the size and location of data. There are also bottlenecks

associated with the scheduling of multiple multiprocessor scheduling.

2.3.3.3 Communication

In a parallel program, processing units have to communicate with each other for

different reasons; this communication forces overhead to the execution time. The cost of

this communication varies in time based on the parallel algorithm, data set organization,

and architecture. The numbers of utilized cores, scheme (SMP, ccNUMA), and

communication backbone (network bandwidth, routing, bus protocol and etc.) affect

communication overhead. A specific architecture might cause a hot spot which

exacerbates this overhead. Activities that generate communication, such as distributed

address space and coherency communication, are good examples of this group. Naturally,

the number of communication packets increases as the number of cores and available

caches grows. This increase in available resources causes speedup and hides the cost,

which is paid for communication. Thus, the ratio of communication to computation is an

effective performance metric. As the ratio increases, the scalability of a system speedup

diminishes. A higher communication-to-computation level effect is the same as

insufficient parallelism.

22

In an SMP system, messages from the coherency protocol form the majority of

network traffic. The focus of this paper is on coherency messages and their effect on

expected speedup. In next part, MESI message overhead is studied more accurately.

2.4 COHERENCY PROTOCOL OVERHEAD

In general, cache is used to utilize the locality and reduce the gap between

memory and processor unit. This obviously increases the performance of a single-core

CPU. As we described at the beginning of this chapter, it is highly coupled with access

patterns of the application and machine specifications [20]. Technology leaps in

parallelism, multicore, and multiprocessor changed the calculation, though. Although a

multiprocessor still takes advantage of locality, an overhead is forced to keep all the

caches coherent. This overhead varies from one application to another, but is always

visible as deviation from ideal performance. In an SMP system, the amount of messages

and data that should be transferred between cores to keep the caches coherent depends on

two different issues. First is the executed application memory pattern and data set size.

Depending on how many of cores share same data, how often they want to write data, and

the order they write and read, the number of required coherency messages and the

amount of transferred data are affected. Second, the coherency protocol and memory

organization influences the required amount of messages.

 In the comparison of a single-core system with a multicore system, a few cases

force extra communication and data transfer. Reviewing Figure 3, which shows a MESI

23

finite state machine, reveals three different cases where extra communication is needed to

keep the memory required.

1. Read an invalidated data. In this case, the cache line is present in the local cache,

but it has been invalidated by another processor. If the coherency issue did not

exist, this memory reference request would have been a hit. However, since

another processor invalidated this copy, it is a miss. An invalidated copy might be

the result of write on another copy, whether this copy was modified, shared, or

exclusive. This case might happen in any level of private cache. When a private

cache receives a request for a reference and finds it in the cache, it checks whether

it is valid or invalidated. If it is invalid, miss is replied to processor, a request for

that reference is posted on the bus (or broadcasted on network), and the core waits

for updated data. Owner processor(s) reply back to the request for data.

2. Read miss to shared data. In a single-core scenario, a miss in private cache is

handled by sending a request to a lower level of memory (toward main memory).

However, in an SMP scenario, the valid copy of this memory reference might be

either in lower memory or the other caches. When memory receives a request for

a memory reference that is not present in the cache; it replies back miss and puts a

miss message for that memory reference on the bus. As a processor with a valid

copy (Modified, Shared, or Owner) receives the message, it put data on the bus.

24

More issues in this case are solved in implementation, and more are discussed in

next chapter.

3. Write to shared data. Writing in a cache can be done either in write back or write

through. Most of the memory hierarchies right now use the write back approach.

This approach prevents the cache from engaging in the continuous updating of

lower shared memory. Consequently, writing into a single core cache loads

memory reference into the cache and writes into it, and updating only occurs

when the reference is evicted from the private caches. Since cache write usually

uses a write allocation approach, three conditions might happen:

i. It is a cache miss and the data is not shared. This is a normal miss

case and does not introduce any overhead.

ii. It is a cache miss and the data is shared. In this case, write

allocation approach requires loading memory reference before writing

data. This case introduces an overhead in the same manner as read to

shared data, which is explained in number two. In other words, the

processor does an ld and st micro-operation for one store instruction. As

the data is present in the cache, a situation such as cache hit, which is

explained in iii, occurs.

iii. It is a hit and the data is shared. In this case, there is a

communication overhead because the processor has to inform the other

25

processors that this shared data is modified and their copy is no longer

valid. This overhead is heavily dependent on architecture, network, and

communication protocol.

In this paper, we attempt to quantify the contribution of each of these cases to

performance loss in graph benchmarks.

26

3 RELATED WORKS

3.1 QUANTIFYING SPATIAL LOCALITY

To alleviate the memory wall problem, an increasing fraction of microprocessor

chips is devoted to caches. In memory hierarchy, higher levels of cache (closer to the

processing unit) are smaller and faster than lower levels (which are farther from the

processing unit). This fact leads us to a tendency toward loading data from the L1 cache,

which is closest to the processing unit. However, the limited size of caches forces

computer architects and programmers to make wiser decisions about where we store the

data references and manage memory. Locality plays a major role in this decision making

process. Two different terms of locality are Temporal and Spatial locality.

1. Temporal locality means that, if a memory location is accessed, then it is

likely to be accessed again in the near future. By looking into the cache access

schema of different applications, it can be seen that some memory locations

are accessed more frequently than others. Additionally, it can be seen that, for

the same memory location, accesses are clustered in time. As a result, when a

word is brought into the cache, there is a good likelihood that it will be

accessed again before it is evicted.

2. Spatial locality refers to the fact that memory locations that are physically

near to each other are likely to be accessed nearby in time. Clearly, spatial

locality results from the fact that related values, such as fields of the same

27

record or neighbor elements of a matrix, are often stored in close proximity to

each other. As a result, when a cache miss causes a memory line to be brought

into the cache, there is a good likelihood that words in the line other than the

one that caused the miss will be accessed as well.

Historically, the data locality properties of programs have been studied for two

different purposes: first, for a better understanding of program behavior (architecture

independent behavior); and, second, for utilizing dynamic locality properties for

prefetching [21, 22, 23]. The focus in this section is on program locality metrics, which

represent the overall memory behavior of program. After gathering detailed statistics

about spatial and temporal locality, it can be tempting to make a general decision, or

comparisons such as: application A has more temporal locality than B. Although this

reduction can be useful, it may be an oversimplification that discards information.

Beyond the qualitative descriptions provided in computer architecture books [24],

various locality characterization metrics have been proposed in literature. In terms of

temporal locality, Pyo et al. [25] introduce reference distance as the total number of

references between accesses to the same data. Beyls et al. [26] show that this metric

cannot exactly predict cache behavior for fully associative caches, but an alternative

metric is able to do so. The alternative metric is based on stack distance. Mattson et al.

studied stack algorithms in cache management and defined the concept of stack distance

in 1970 [27]. Applying the same concept as LRU stack distance, Reuse Distance is

28

defined as the number of distinct memory references between two successive references

to the same location; reuse distance provides a quantification of the locality present in a

data reference trace. This metric has two advantages [28]:

1. LRU replacement policy or its variants are used in most of the caches.

This means any distance (d) smaller than cache size (N) is accurately

modeled as hit (d<N) and the rest as miss.

2. Reuse distance measures the volume of the intervening data between two

accesses and is always bounded by the size of physical data, while other

metrics such as time distance can be unbounded.

The major problem of this metric is the high cost of the analysis, which precluded

its online use. Neu et al. [28] presented the first parallel algorithm to compute accurate

reuse distances by analysis of memory address traces. Reuse distance is used as a metric

in Ding and Zhong [29]. The same study [26] uses this locality characterization metric to

analyze the distribution of the conflict and capacity misses in the execution of code

generated by an EPIC compiler, and reasons on the impact of increasing parallelism in an

application on the number of capacity misses.

Weinberg et al. [32] represented temporal locality as a set of reuse distances and

corresponding memory operation fraction. The memory operation fraction is calculated

by reuse function (Equation 3), where reuse i denotes the fraction of dynamic memory

operations with distance less than or equal to i.

29

An important parameter is to assign weight to the memory references at each

reuse distance. For simplicity, this initial study employed a log scale where each memory

reference is weighted by the log of its reuse distance with respect to the largest distance

considered. Thus, the reuse function provides a single architecture-independent score for

each reuse distance [32].

𝑓(𝑥) =
∑ ((𝑟𝑒𝑢𝑠𝑒2𝑖+1 − 𝑟𝑒𝑢𝑠𝑒2𝑖) ∗ 𝑙𝑜𝑔2(𝑁) − 𝑖)

𝑙𝑜𝑔(𝑁)

𝑛=0

𝑙𝑜𝑔2(𝑁)

Equation 3

In terms of spatial locality, previous works have attempted to quantify it, mainly

via scalar metrics that allow for easy ordering and/or clustering of applications in locality

classes [30]. Weinberg el al. [32] defined spatial locality metric by assigning a

proportional weight to the strides and ending up with one single score between 0 and 1

(Equation 4). In this formula, 𝑆𝑡𝑟𝑖𝑑𝑒𝑖 denotes the fraction of total dynamic memory

operations that are of stride length i.

∑𝑆𝑡𝑟𝑖𝑑𝑒𝑖

∞

𝑖=1

/𝑖
Equation 4

We should consider that the spatial locality metric (which constitutes most spatial

metrics) is hard to efficiently calculate in run-time [30]. All of the aforementions studies,

however, tend to treat the spatial and temporal dimensions of locality as completely

orthogonal to each other and thus only offer a pair of uni-dimensional scores. Anghel et

30

al. [31] propose to generalize these concepts and quantify the entire two-dimensional

spatio-temporal locality characteristic of a program accurately.

In this section, we focused primarily on the memory reference patterns of

individual processors to their local memory. This means that literatures mentioned above

are characterizing only locality through their own caches. Moreover, spatial and temporal

localities exist in messages and inter-processor communication [32]. However, even these

metrics can provide a good insight into the nature of our benchmarks. Consequently, the

first step toward a better understanding of this interconnect locality is looking more

accurately at the effect of inter-processor memory communication on machine

performance. Then, we see why multiprocessors naturally weaken the existing locality

and even force overhead to the machine. Next, cache coherency protocols are discussed,

and the reason why inter-processor locality affects machine performance is explained.

3.2 OVERHEAD CHARACTERIZATION

Generally, coherent overhead can be represented by different metrics and

measured for different architectures and schemes. In one of the earliest studies, Hennessy

et al. [33] reviewed the key developments that led to the creation of distributed cache

coherent shared memory. They used a distributed coherent cache prototype (DASH) and

compared local and remote access time. They concluded that scaling and speedup are

going to be issues in DSM system very soon. In 1980, Emerson et al. [34] tried to

characterize parallel applications for the purpose of coherency protocol overhead

31

estimation. They studied overhead of Barkely Ownership and Firefly protocols by

simulating the generated parallel benchmark trace for 11 or 12 processors. The study tried

to characterize the synchronization overhead as well as coherency protocol. Since the

simulator in this study was not a full system simulator, they assigned a cost to each stage

transition as an average cost. Also, memory size of transferred data was not taken into

account, since they fixed the block size at 8 words. They finally concluded that write-

invalidate protocols have better performance than write-broadcast protocols. The overall

calculated wasted cycles were 2% of total cycles.

A number of works characterized the overhead issues on ccNUMA systems.

Chanduri and Heinrich proposed a new DSM coherency protocol that does not require

NAK messages [35]. They measured the detail overhead of NAK messaging in DSM as

well as the characterization of lock, synchronization, and total memory operation

(without further protocol cycle details). Heinrich et al [36] characterized detailed

overhead of parallel application execution on a FLASH multiprocessor, including the

overhead of exploited ccNUMA protocol.

Kunz focused on large-scale multiprocessors and characterized and analyzed the

execution bottlenecks of a parallel application on a FLASH system [18]. Beside operating

system and synchronization overhead, Kunz used several protocol models for the same

benchmark and justified the performance tradeoffs. Execution times of different protocols

were compared, but the overhead times of the individual protocols were not measured.

32

Heinrich et al. [37] characterized cache coherency protocols in large scale shared

memory processors where the overall performance critically depends on cache coherency

protocol. They compared several NUMA distributed shared memory protocols and also

Cache-only Memory Architecture (COMA). Since communication in a large scale

multiprocessor is highly affected by network, coherency messaging was observed as the

root of major differences between the performances of surveyed protocols. They finally

concluded that finding optimal coherency protocol based on overhead data is difficult

because a change in machine specifications (for example, cache size) can change the

overhead of protocols even for fixed applications.

Molka et al. [38] presented fundamental details on ccNUMA architecture on Intel

Nehalem microarchitecture and its memory controller, Intel® QuickPath Interconnect. In

this paper, bandwidth and latency between different locations is profiled, including on-

chip cache latency and off-chip ccNUMA memory latency. This work did not

characterize benchmark memory behavior or detail protocol overhead, but measured their

effects on latency and bandwidth. With a similar approach, Peng et al. compared AMD

Athlon64 and Intel Core 2 Duo [39]. They profiled the execution of STREAM and

STREAM2 on an actual machine and recorded bandwidth and latency of memory access,

but did not provide details on protocol performance and timing issues.

Kumar and Huggahalli examined a specific kind of coherency protocols in a

network traffic analyzer machine, which uses general-purpose processor containing

33

Intel® Core™ micro-architecture based processors [12]. They measured the wasted time

in various protocols for coherent write and read between NIC (Network Interface Chip)

and processor caches, using DCA (Direct Cache Access). They did not take cache

coherency through cores into account, but they showed that for this specific coherency

application, the system is mostly stressed by coherency overhead in 10 Gb/s bandwidth

[40].

Montaner et al. [41] decoupled the remote memory needed for computation from

remote memory needed, due to limited space in a certain node in clusters. In this

approach, OS hot-plugged support is required, and OS should be aware of free space in

other nodes. Execution time was then measured, which showed how remote data transfer

can cost overhead to the system.

Borroso et al. characterized the performance of a specific memory system facing

commercial workloads [42]. They looked at the performance of two commercial

workloads, online transaction processing (OLTP) and decision support systems (DSS), on

an alpha multiprocessor using both simulation and monitoring actual system. Their

emphasis is primarily on the characterization of only those different aspects that are

needed to see the trend of performance on different specification. Miss rate, sharing

patterns, etc. in various cache sizes are studied. Borroso et al. mostly tried to characterize

memory misses in detail such as false sharing, true sharing, replacement and cold misses.

34

Foglia et al investigate the performance of MIPS-based 4- and 6-processor

systems using MESI coherency protocol facing Electronic Commerce applications [43,

44]. They looked at false sharing and true sharing and portion of misses as well as

invalidation miss percentage. Since they used a trace-based simulator [45], they could not

provide any timing data regarding execution time overhead.

The human conventional wisdom as well as results from these papers says that

communication overhead is highly correlated with the specific application and its data-

intensiveness. The focus of this paper is on data-intensive graph applications. So, to

continue, we talk more about graph applications and their characteristics.

3.3 PERFORMANCE AND OVERHEAD OF GRAPH APPLICATIONS

Vetter et al. [46] showed that extreme-scale applications have specific

characteristics, some of which are expected and some of which contradict conventional

wisdom. Their metrics are classified into two classes, computation and communication.

Most of these metrics are measured for 12 HPC benchmarks including Graph500. Reuse

distance and memory bandwidth as well as communication patterns are metrics which are

studied. However, this paper does not provide complete data for graph benchmarks such

as Graph500 or SSCA2, which are known for low locality.

Checconi et al. [47] focused on reducing the scaling overhead of Graph500 on a

NUMA machine by optimizing the algorithm. Using several optimization techniques,

35

especially those for mapping virtual processors to nodes, the BFS algorithm showed a

better scalability, although the overheads were not measured independently.

The execution of Graph500 on an 82-node cluster and the measurement of

traversed edges per second (TEPS) as a performance measurement by Angel et al. [48]

demonstrated Graph500 as a benchmark to measure a computer’s ability to efficiently

access memory. Cui et al. [49] and Yasui et al. [50] showed that in the OpenMP/MPI

hybrid model for multi-node and the OpenMP model for single node execution of

Graph500, communication is the chief influence on performance (GTEPS), and the

optimization of memory transfer can increase performance by 50 percent.

3.4 SUMMARY AND RESEARCH CONTRIBUTION

As we saw earlier, scalability is an expected feature in a parallel system, but

various overheads reduce the ideal speedup as the number of processor units increases.

Previous studies show that communication between cores is a very substantial factor in

this speedup limitation. In a single core machine, cache hierarchy is a solution to alleviate

memory wall. However, in a multicore system, these caches have to communicate with

each other to keep the shared data coherent.

Locality of data is a substantial factor in the amount of required communication.

Spatial and Temporal locality are hard to quantify, and it gets worse when it comes to

multicore processors. However, studies which are discussed at the end of this chapter

showed that graph applications have a very low level of locality. In graph applications,

36

less locality leads processor units to more communication and more cache coherency

overhead. Since most of the papers showed that such an overhead is large but did not

quantify it, we quantified this overhead and investigated how it affects scalability.

Since this kind of data is not available through software profiling, we have to use

a cycle accurate simulator. This simulator has to be close to an actual machine to provide

data, which can then be validated by data from a real-world machine. The methodology

of our experiment is described in the next chapter, which also discusses the machine

specifications, simulator specifications, how overhead is measured, and practical points

about protocol. After measuring the number of cycles that coherency protocol wastes, we

can calculate how much performance loss is directly correlated to coherency protocol.

37

4 METHODOLOGY

4.1 QUALIFYING BASELINE PERFORMANCE AND OVERHEAD

As we discussed previously, parallelization overhead appears when we increase

the number of computation units. When this occurs, the execution time is not affected as

much as the scaling factor. In this work, the definition of overhead is the deviation of

execution time from ideal execution time. However, we should take into account that not

all of the execution time can be diminished as scaling factor rules. According to Equation

5, execution time is divided into two parts: parallel and sequential computation times.

Amdahl’s law says the sequential part is not affected by scaling factor as we increase the

number of parallel processing units. This sequential time limits the ideal speedup.

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑁 = 𝑃𝑎𝑟𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑁 + 𝑆𝑒𝑞𝑇𝑖𝑚𝑒 Equation 5

Consequently, we should know what fraction of a program is solely sequential

and what fraction is parallelizable for a specific number of parallel processing units. This

sequential time is measured for each individual benchmark on a real-world platform [14,

51]. Now, our achievable speedup is less than the number of parallel processing units as

we took into account that a fraction of the application is naturally non-parallelizable.

This ideal speedup varies based on the parallelizable fraction of the program as it is also

bounded by scaling factor.

𝑃𝑎𝑟𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑁 = 𝑃𝑎𝑟𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑁 + 𝑃𝑎𝑟𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑁 Equation 6

38

The gap between the execution of the benchmark on the machine and the ideal

execution time of the parallel program is what we call parallelization overhead (Equation

6). Looking at Equation 7 and section 2.3, this overhead can be broken into different

components.

𝑃𝑎𝑟𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑁

= 𝐿𝑖𝑏𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑁 + 𝐵𝑎𝑟𝑟𝑖𝑒𝑟𝑇𝑖𝑚𝑒𝑁

+ 𝐿𝑜𝑐𝑘𝐶𝑆𝑇𝑖𝑚𝑒𝑁

+ 𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑦𝑇𝑖𝑚𝑒𝑁𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑁

Equation 7

In the previous section, we reviewed the direct measurement of each component

in literature and showed that coherency overhead has been never measured for recent

multicore processors, especially not directly and cycle-accurately. Using tools such as the

PGOMP binary instrumentation tool [51] enables us to measure all of the overhead

components directly, except the coherency time [14]. Consequently, one approach is to

use the data collected by PGOMP to find all overhead portions except coherency

overhead; the remaining part has to be coherency overhead [14].

This work collects coherency protocol data directly. To directly measure the

coherency overhead time, we need to access some additional underlying information

beside the miss or hit rate, which are available through profiling tools. An alternative for

collecting such data is using a cycle-accurate simulator. This cycle-accurate simulator has

to be a full system simulator because we need to simulate the multicore processing unit,

39

interconnect and communication between cores, and memory hierarchy. The advantage

of a full system simulator instead of only memory system simulator is a guaranteed match

between real-world machine and simulated machine. A few problems are standing in the

way of finding and using a cycle-accurate simulator:

1. This simulator should simulate an existing architecture. Due to the extremely

large development time of a simulator, not enough cycle-accurate simulators are

available. Most cycle-accurate simulators are old, outdated, or obsolete. From the

few cycle-accurate simulators, we need a simulator to simulate our existing x86

real-world machine. Existing x86 simulators are Superscalar, Zesto, PTLsim,

Gem5, and MARSSx86 [52]. Superscalar [53], Zesto [54], and PTLsim [55] are

all single-core simulators. Gem5 [56] is a full system, which has limited support

for x86 but does not support MMX or SSE instructions. MARSSx86 is an x86

cycle-accurate simulator [57, 58]. It is a full system simulator and contains a

cycle-accurate model for interconnect, memory controller, and memory hierarchy

as well as multicore processor model. MARSSx86 uses PTLsim as a core model.

This simulator suits our needs better than the other options.

2. Validation and accuracy is a questionable issue. Since academic research usually

studies relative performance improvement rather than the imitation of existing

real-world systems, academic simulators are rarely validated against real-world

machines. Even when they are validated, a huge error is shown. MARSSx86 is

40

one of the few simulators that are validated against actual machine. Simulation

error varies among different metrics from 0 percent to 100 percent. We talk about

validation in more detail in section 4.2.

3. The biggest problem of cycle-accurate simulators is extremely long simulation

time. While a real processor has a performance in the order of thousands of MIPS,

a simulator has performance of one to hundreds of KIPS. The long simulation

time issue is a critical issue, especially when a multicore simulator is used. This

long simulation time may make the full system simulation impossible when the

number of cores increases. MARSSx86 simulates about 160 KIPS for a single

core [57]. This speed critically limits the size of application that we can simulate,

so the benchmark should be selected wisely. Benchmark selection is discussed in

section 4.5.

4.2 SYSTEM VS SIMULATOR SPECIFICATION

An Intel Xeon E7 2860 machine is used as the real-world platform. It has 10 cores

on chip, which share a 24MB shared L3 cache, while each core has two levels of private

caches. Detailed specifications are shown in Table 1. MARSSx86 is developed, which is

very flexible to change configuration. We wrote our configuration to imitate Intel Xeon

E7 2860. The configuration file is available in Appendix A. More information about

memory hierarchy, such as latency, interconnect, and protocol of these two platforms is

provided in section 4.3.2.2 and Table 3.

41

Processor Intel Xeon E7 2800 MARSSx86

Code Name Westmere-EX -

Cores 10 10

Clock Rate 2.26 GHz 200KHz

Max Ins Decode per Cycle 4 4

ROB Size 128 128

Int ALU 3 3

FP Units 3 3

LSQ Size 96 96

L1D Cache

32KB per core

64 byte lines

8-way set associative

32KB per core

64 byte lines

8-way set associative

L1I Cache

32KB per core

64 byte lines

4-way set associative

32KB per core

64 byte lines

4-way set associative

L2 Unified Cache

256KB per core

64 byte lines

8-way set associative

256KB per core

64 byte lines

8-way set associative

L3 Unified Cache

24MB shared

64 byte lines

24-way set associativity

24MB shared

64 byte lines

24-way set associativity

Table 1- Real-world platform specification

42

MARSS community validated the simulator against Intel Xeon 5620 with 4 cores

for benchmarks such as SPEC, STREAM and PARSEC (Table 2) [57, 58]. The IPC

metric showed less than 2 percent variation for all the reported benchmarks. Caches and

main memory round trip latency had a 1 percent error. CPU function unit latency was up

to 91 percent different from the real-world machine.

Table 2- Difference between real-world and simulated Intel XEON 5620

Metric Maximum Difference

IPC 200 %

Cache Round Trip Latency 1 %

Function unit latency 91 %

IPC variance among different pthread configurations 0.4 %

Since most differences are not very large, especially the difference in memory

latency l, using MARSSx86 looks reasonable. In the result section, we will report our

validation data. We continue with a brief explanation of the MARSSx86 structure, with

focus on memory hierarchy.

4.3 MARSSX86 STRUCTURE

MARSSx86 is a tool for cycle-accurate full system simulation of the x86-64

architectures, specifically multicore implementations. By using QEMU, MARSSx86

provides a full system emulation environment with a model for chipset and peripheral.

The detailed simulation of x86-64 ISA, which consists of detailed pipeline model, is done

43

through PTLsim. It also has a detailed model for coherent cache and on-chip

interconnections. Both write-back and write-through schemes in caches at any level are

supported. As coherency protocol options, MESI and MOESI are available. As an

interconnect model, point-to-point, split-phase, on-chip bus, and the switch interconnect

model are available. Also, it has a simple DRAM model that simulates bank conflicts and

DMA channels [57, 58]. In Figure 6 [57], the general schema of simulation and

interaction between simulator and emulator is shown. All the information provided in this

section can be found in the PTLsim manual [55] and MARSSx86 documents [57, 58].

Figure 6- MARSS general schema

4.3.1 CORE MODEL

As a core model, MARSS uses PTLsim. PTLsim supports the full x86 instruction

set with all extensions, including x86-64, SSE/SSE2/SSE3, MMX, and x87. Figure 7

http://marss86.org/~marss86/images/1/16/Block_diagram.png

44

shows the high level overview of PTLsim [52]. As PTLsim receives x86 instructions, it

converts them to RISC-like instructions called uops (micro-operationa). This is the same

as processors’ uop-translation stage, where each instruction is broken to one to four uops.

Each of the 129 uops of PTLsim has three source registers and one destination register.

Instantly after making uops, PTLsim pre-decodes them and call them transops. The only

purpose of this early decode is faster simulation. Then, a group of transops make a basic

block (BB). Each basic block is indexed by a structure, which includes virtual address

and physical page frame number of first transop. In continuance, transop and uop can be

used interchangeably. Each BB consists of 64 uops and terminates by condition operation

or barrier operation. Then uops go through a pipeline, which has fetch, rename, dispatch,

issue, complete, writeback, and commit stages.

In the fetch stage, the simulator directly fetches pre-decoded micro-operations

from the basic blocks, but simulates the Icache by probing the cache based on current

virtual address. It probes the Icache and checks whether the current address of basic

block is in the cache or a miss has happened. If a miss has happened, the simulator stalls

the fetching. A branch predictor is used in this stage to predict the next uop when the

simulator faces branch operation.

The renaming stage starts by reading a configurable number of uops from the

fetch buffer. The registers of these uops are mapped into two register files, Physical

Register File (PRF) and a Retirement Register File (RRF). Then, these uops are placed in

45

a reorder buffer (ROB) and wait for the next stage. The number of cycles for renaming

stages and the number of ROB entries are configurable.

During the dispatch stage, the simulator dispatches a configurable number of uops

from ROB into scheduling queues. There are four scheduling queues: three integer

queues and one floating-point queue. The first integer queue serves an ALU and an

ALUC, which handles multiplication and division as well as conditional operations. The

second and third integer scheduling queues serve an ALU and an LSU which handles

load/store operations. The floating-point queue is handled by several floating-point

computation units.

Figure 7- Micro architecture of PTLsim Out-of-Order core

46

In the issue stage, the oldest ready entry of each queue is issued to execution

units. The maximum of one entry is issued and released from queue per cycle. A

configurable delay rules how many cycles an uop stays in the execution unit. As you can

see in 4.3.2, store uops become ready as soon as their addresses are computed, and may

be issued before their stored data is available while the other uops become ready when all

of their input operands are ready. In the complete stage, the simulator marks the uops,

completing execution, and puts them on the forward-bus to send the results for the uops

which are waiting for them. Then, in the writeback stage, PTLsim writes back the results

into the physical register file (PRF). Finally, the simulator retires the uop and puts it into

the retirement register buffer (RRB). An uop only commits when all the uops belonging

to an instruction are completed and ready to commit. This guarantees atomicity of x86

instructions.

The Westmere pipeline is illustrated in Figure 8 [59, 60]. MARSSx86 cores are

capable of being configured as close approximations Westmere cores. Although the core

configuration is not our concern, the core configuration is available in Appendix B. Since

we are simulating Westmere-EX, we are connecting 10 cores in the processor.

47

Figure 8- Core Schema in Westmere

4.3.2 LOAD/STORE IN SIMULATOR VS. REALITY

MARSSx86 tries to imitate real-world x86 architectures. Since our concerns are

only how the load and store operations are issued and how they are handled by memory

hierarchy, we can compare real hardware and the simulator in two parts: first, the

procedure of issue stage for load/store and the sending request at the processor side; and,

second, memory hierarchy and protocol implementation at memory side.

4.3.2.1 Load/store handling in processor

Load and store are issued by two special methods to handle their various

dependencies. These dependencies can occur because some loads or stores may be

overlapping. For example, in the PTLsim out of order model, a given store may merge its

48

data with a previous store in the program order. First, the physical address for load/store

is generated by looking at TLB. TLB is also simulated and it may face miss. The TLB

miss penalty is set by configurable delay. In this stage, some exceptions, such as page

fault, are handled. After the generation of physical address, and the check for exceptions,

the simulator checks the load store queue (LSQ) backward in time to the head of LSQ for

any possible dependency. This ensures that a simulator that loads, and which may need to

forward data from a store (store forwarding) always references exactly one store queue

entry, rather than having to merge data from multiple smaller prior stores to cover the

entire byte range being loaded. Store forwarding (SF) is implemented in Westmere as

well as MARSSx86. SF means when a load data follows a store that reloads the data

which is just written by the store into the memory, the micro-architecture can forward the

data directly from the store to the load in many cases [59, 60]. This only happens after

checking that:

1. The store must be the last store to that address prior to the load;

2. The size of the store must be equal to or greater than the size of data being loaded;

and

3. The load data must be completely contained in the preceding store.

The other important practical issue is memory disambiguation. A load instruction micro-

op may depend on a preceding store. Many micro-architectures block loads until all

preceding store address are known. The memory disambiguator predicts which loads will

49

not depend on any previous stores. When the disambiguator predicts that a load does not

have such a dependency, the load takes its data from the L1 data cache. Eventually, the

prediction is verified. If an actual conflict is detected, the load and all succeeding

instructions are re-executed.

The current version of MARSSx86 always uses write-allocation [59, 60].

However, Intel64 architecture uses write-allocation scheme for most of the cases. This

architecture does not write-allocate on a write miss when the write operation is non-

temporal. When data is streamed in and out of the processor, as the case may be with

SIMD/vector operands, there is no need to store this data in the cache as it is not expected

to be needed in the near future. Write allocate operations are costly, especially when the

block slated to enter the cache would have to evict a modified block already resident in a

conflicting cache location. The Intel compilers may select the non-temporal write

operations when it is evident that the written data are streamed out of the processor.

Finally, after handling exceptions and dependencies, the simulator sends the

request to the memory hierarchy. Connections between cores, caches and main memory

are configurable. Switch, bus, and split-phase bus are our options. In continuance, we

look at the interconnect and memory hierarchy of the simulator and compare them to

Westmere-EX.

50

4.3.2.2 Memory Hierarchy in MARSSx86 vs. Westmere-EX

In Westmere architecture, each core has its own L1 and L2 private cache. Also

Icache and Dcahce are separated from each other and have different associativity. Cache

hierarchy in MARSSx86 has this flexibility to be configured, same as our real

architecture. Table 3 shows different features of both memory hierarchies. The size and

associativity of the simulator are set and completely match the real-world platform. Still,

some differences are inescapable.

First, the currently available MARSSx86 version supports only inclusive cache

hierarchy. In Westmere architecture, the L3 cache is inclusive (each memory reference in

L1 and L2 has to be present in L3 as well) but L2 is non-inclusive (data references in L1

are not necessarily present in L2). This difference is negligible because it is only the case

for L2. Cache latency in Westmere is provided from [59, 60].

Table 3– Memory hierarchy in Intel Xeon E7 2800 and MARSS

Processor
Intel Xeon E7

2800
MARSSx86

L1D Private

Cache

32KB per core

64 byte lines

8-way set

associative

Latency: 3

32KB per core

64 byte lines

8-way set associative

Latency: 3

51

L1I Private

Cache

32KB per core

64 byte lines

4-way set associative

Latency: 4

32KB per core

64 byte lines

4-way set associative

Latency: 4

L2 Unified

Cache

256KB per core

64 byte lines

8-way set associative

MESIF Protocol

None-inclusive

Latency: 10-12

256KB per core

64 byte lines

8-way set associative

MESI Protocol

Inclusive

Latency: 12

L3 Unified

Cache

24MB shared

64 byte lines

24-way set

associativity

Writeback

Inclusive

Latency: 36-40+

24MB shared

64 byte lines

24-way set associativity

Writeback

Inclusive

Latency: 36

Second, the MARSSx86 interconnect and Westmere are not completely matched.

Point-to-point, switch, bus, and split-phase bus are supported in MARSSx86. Point-to-

point does not have a queue, and it connects two components without any delay. This

connection is used for the connection between private caches and cores. As the core

schema shows in Figure 8, the connection between core, L1, and L2 can be simulated as

point-to-point without any delay since the delay is already reflected in cache delay.

52

Figure 9- Core interconnects

Figure 9 [12] illustrates the un-core interconnects in Westmere. In this processor,

the un-core domain is essentially a shared last level L3 cache (LLC), a memory access

chip-set (Northbridge), and a QPI socket interconnection interface [59, 60]. Cache line

requests from the on-chip ten cores, from a remote chip, or from the I/O hub are handled

by the Global Queue (GQ), which resides in the un-core (Figure 10 [60]). The GQ

buffers, schedules, and manages the flow of data traffic through the un-core. A cross-bar

switch assists GQ in exchanging data among the connected parts [59]. The operations of

the GQ are critical for the efficient exchange of data within and among Westmere

processor chips. The GQ contains 3 request queues for the different request types:

 Write Queue, a queue for store memory access operations from the local cores;

 Load Queue, a queue for load memory requests by the local cores; and

53

 QPI Queue (QQ), a queue for on-chip requests delivered by the QPI links.

Figure 10- Westmere-EP (6-cores) on-chip interconnect

Westmere-EX has 4 Intel® QuickPath Interconnect (QPI) terminals, which can

provide off-chip connection (Figure 11 [60]). QPI provides a fast point-to-point

interconnect between chips, as illustrated in Figure 12 [60]. QPI provides a backbone and

network protocols such as network layer abstractions and message packaging policy for

efficient connection. The interconnect link pair operates two unidirectional links

simultaneously, which gives a final theoretical raw bandwidth of 25.6 GB/s.

54

Figure 11- Westmere core off-chip interconnects

In MARSSx86, Global Queue can be simulated by either split-phase bus or

switch. It is important to note that in either of these network solutions, coherency

protocol connection is not affecting data bandwidth. Also, QPI channels between

processors can be simulated in MARSSx86 theoretically. However, since we did not use

the second processor of our real-world platform and computation was kept on-chip, we

do not need to simulate them.

55

Figure 12- QPI point-to-point connections

The third issue is coherency protocol. Westmere is using snoopy protocol with a

small directory part. This is same as what we explained in sections 2.2.2 and 2.2.3. QPI

also provides a platform for processors to be able to snoop each other, and provides

distributed directory-based protocol [12]. Westmere uses MESIF, which has one state

more than regular MESI. A specific cache memory is chosen to store a shared block in

the Forward state, and is allowed to forward it to other requesters. The presence of this

state prevents the collision of data sent on the bus. On a switch network, it ensures that

unnecessary packets are not sent to the data requester. However, MARSSx86 only

provides snoopy MESI. The configured protocol in simulation is close to Westmere, but

the controller is slightly different since the limited directory is not implemented.

56

Fourth, MESI protocol faces two practical difficulties. First, the atomicity of

multistep miss process should be guaranteed [24]. Steps of an upgrade miss are miss

detection and invalidation message generation, access to transmission media, and

processing of the invalidation in the other processors. In a scenario where two processors

try to update a cache line, this atomicity is crucial. This atomicity can be solved if the

implemented platform guarantees delivery of the message as the processor accesses the

network. Both the winner processor and the loser processor understand the situation, and

stop or continue the process. This atomicity and guaranteed order is easily implemented

in MARSSx86, since MARSSx86 uses a signal-event-callback approach. A second

difficulty occurs in a write-back cache, where the data for a read or write miss can come

either from memory or from one of the processor caches, but the requesting processor

will not know a priori where the data will come from [24]. In most bus-based systems, a

single global signal is used to indicate whether any processor has the exclusive (and

hence the most up-to-date) copy; otherwise, the memory responds. These schemes can

work with a pipelined interconnection by requiring that processors signal whether they

have the exclusive copy within a fixed number of cycles after the miss is broadcast. This

problem is also easily handled in simulation, since, when a cache or memory answers a

request in the same cycle, the simulator checks all entries in the queue, and the other

answers, which are not from the critical path (answers from coherent memory with higher

delay), will be annulled.

57

4.4 COHERENCY OVERHEAD MEASUREMENTS

For the purpose of coherency overhead measurement, we tracked x86 instructions

from the top of the pipeline. Since the uop structure also has the information about the

belonging instruction, it is possible to profile the application by size or category of

instruction in the issue stage. We start tracking each instruction from load/store issue

stage in the core model. As the processor sends the request to cache hierarchy, we check

if it is one of the three cases, which we explained in section 2.4 as coherency overhead.

By editing the request structure, we are able to track the request deep into the cache

hierarchy. We also track the source and the size of the instruction to the end.

When the cache controller receives the request, it starts to process the request. We

are interested in three special cases, as we explained in section 2.4. In the first and second

cases, which are Read an invalidated data and Read miss to shared data, we look at the

state machine and mark the request when they happen. Due to the signal-even-callback

nature of simulator, we finalize our measurement in the callback function of the data

arrival signal. When the data which belong to our target request arrive into the processor,

that signal will be triggered. We can collect the number of wasted cycles based on the

size of requested memory as well. The other information is the sharing and

communication pattern. This helps us to know what fraction of shared data is provided or

invalidated by each core.

58

The third case is write to shared data. Section 2.4 explained this case in detail

and classified it in three categories. If it is a cache miss and the data is not shared, the

request is not a coherency overhead. If it is a cache miss and the data is shared, since

Westmere is using write allocate scheme, the wasted cycles are calculated in the read

miss to shared data case because the simulator first brings the data to the cache and does

that by handling the store uop as a load uop first. If it is a hit and the data is shared, the

only overhead is snoopy overhead because no data is needed to transfer. As the simulated

and real-world interconnect networks are split-phase, snoopy messages and data

messages are not using the same media and consequently are not affecting each other’s

bandwidth. In this case, the delay of updating status in lower memory hierarchy is

measured.

Finally, the time, which is measured as coherency overhead, is used for further

calculations based on what we explained in 4.1. The data that is provided from the real-

world machine is used to see how much speedup is lost in scaling, and then the measured

coherency overhead is used to see what fraction of it is due to the coherency overhead.

4.5 BENCHMARKS UNDER EXAMINATION

As we explained in section1.1 and 3.4, our focus is on parallel graph applications.

As is shown in section 3.3, Graph applications have very low levels of locality and have

many load/store operations. The memory footprints of graph applications are usually

59

large and random. All of the examined benchmarks use OpenMP for parallelization.

Three different benchmarks are used to measure coherency overhead:

1. Graph500 [61]: This benchmark is a compact application that has multiple

analysis techniques accessing a single data structure, which represents a weighted,

undirected graph. This benchmark includes a scalable data generator, which

randomly generates tuples containing the start vertex and end vertex of each edge.

The second kernel performs a breadth-first search (BFS) over the graph. Overall,

the benchmark goes through six steps:

A. Generate the edge list. The scale factor determines the scale of data set.

We used a scale of 16 for this benchmark.

B. Construct a graph from the edge list (kernel 1). The vertex numbers are

randomized, and a random ordering of tuples is presented to kernel 1. The

generated list does not exhibit any locality to be exploited by computation

kernels.

C. Randomly sample 64 unique search keys.

D. Search and compute the parent array (kernel 2). The performance of this

kernel reflects (i) architecture throughput when executing concurrent

threads, (ii) resilience to hot-spotting when many of the memory

references are to the same location, (iii) the efficiency when each thread is

60

asynchronous side effect of others, and (iv) the effect of dynamic load

balance unpredictability.

E. Validate that the discovered array is correct.

F. Compute performance information.

2. SSCA2 [62]: This is a graph theory benchmark, which represents computational

kernels of biology, complex network analysis, and national security. This

benchmark is based on the HPCS Scalable Synthetic Compact Applications graph

analysis benchmark. SSCA2 is characterized by integer operations, a large

memory footprint, and irregular memory access patterns. It has multiple kernels

accessing a single data structure representing a weighted, directed multigraph. In

addition to a kernel to construct the graph from the input tuple list, there are three

additional computational kernels to operate on the graph. Each of the kernels

requires irregular access to the graph's data structure, and it is possible that no

single data layout will be optimal for all four computational kernels. We used a

scale of 9 for this benchmark.

3. HeatedPaled [63]: This algorithm is one of the regular benchmarks of parallel

applications. This code solves the steady state heat equation on a rectangular

region. The region is covered with a grid of M by N nodes, and an N by N array is

used to record the temperature. Every iteration, it solves the heat equation for all

elements and calculates the difference in average temperature between four

61

corners of the grid. If the difference is less than an epsilon, it is in steady state and

the calculation finishes. We used a 300 by 300 grid for this benchmark.

4.6 SUMMARY

In this chapter, we started with our definition of overhead, parallelization

overhead and coherency overhead. We explained the detail of our simulated and real-

world platforms. We compared details of them in both processor side and memory

hierarchy side. The obligatory and configurable differences and matches were depicted.

At the end, the data collection and overhead calculation methodology were cleared and

the examined benchmarks briefly described. In next chapter, we show the results of this

measurement and calculation and show how coherency affects the scaling and speedup.

62

5 RESULTS

This chapters starts with the measurement of a spatial locality metric that we

explained in 3.1 to show that graph applications have low locality. In section 5.2 the

validation results from the execution of Graph500, SSCA2 and HeatPlate are shown, and.

The effect of simulator accuracy on final result is also discussed although in section 4.3,

the validation results of MARSSx86 for PARSEC and SPEC benchmark are presented.

Then, in 5.3, the barrier, lock, and coherency protocol overheads of benchmarks are

measured by an instrumentation tool. In 5.4, 5.6, the coherency protocol overhead is

directly measured and discussed.

5.1 LOCALITY CHARACTERIZATION

According to the discussion made in Section 3.1, we characterize the locality of

our benchmarks using the spatial locality metric formula that is provided in Equation 4.

This metric sums all of the strides by their size and outputs a number between zero and

one. This locality metric is not an accurate measurement for locality; however, it can give

us a good insight about how the graph benchmarks (SSCA2 and Graph500) are different

from regular parallel applications.

This locality metric is reported by Weinberg et al. [32] for several HPC

benchmarks. In Figure 13, this spatial locality metric is illustrated for FFT, HPL, GUPS

and STREAM. We measured this metric for three benchmarks that are used in this paper,

and which are shown in Figure 13 as well. As we see, Graph500 has the lowest spatial

63

locality score. This confirms our claim that graph applications usually have very poor

locality. On the other hand, HeatPlate, as a normal parallel application, has an acceptable

locality.

Figure 13- Spatial locality metric

5.2 VALIDATION AND SIMULATOR ACCURACY

The simulator is configured to imitate a Westmere-EX machine. However, since

the detailed specifications of the CPU are not provided by vendors, a variable error is

introduced to the system. This error varies as we change the number of threads and the

benchmark, because we utilize a different number of cores and execute a different

distribution of instructions. Since both pipeline and memory hierarchy (caches and

interconnects) are modeled in a full simulator, the accuracy of both parts should be

evaluated. It should be mentioned that these two errors are highly correlated. The

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FFT

HPL

GUPS

STREAM

Graph500

SSCA2

HeatPlate

64

simulator is expected to have an execution time very close to the execution time of the

actual machine. However, a combination of pipeline error and memory subsystem

inaccuracy causes a variable error in execution time. A big source of pipeline inaccuracy

is uop translation. As we explained in Section 4.3 each x86 instruction is broken into

uops before entering into the pipeline. Since vendors do not provide detailed information

about uops and the instruction translation process, the simulator has to choose its own

uops, which can be different from actual Westmere uops.

Moreover, memory subsystem error can also be reflected in execution time.

Memory subsystem error has its roots in the misapproximation of cache delays and

interconnect delays. Deviation from correct timing affects execution time. For example, if

a cache line is not delivered on time, the pipeline stalls and the dependent instructions

have to wait more. In a vicious chain of events, this also might cause more cache misses

and more stalls.

MARSSx86 shows a very unsteady error as we change the number of threads and

benchmarks. In Figure 14, the percentage of absolute error between the actual machine

and the MARSSx86 total execution cycles for all three benchmarks is illustrated. Since

we did not change the source code of benchmarks and since ptlcalls (functions to

communicate between simulator and host machine) are not added to the source code, the

core with the longest execution determines the execution time of the benchmark. The

thread affinity is guaranteed since the number of available cores is set as the number of

65

threads. The error is variable from 9.82 percent for the 4-thread execution of Graph500 to

134.66 percent for the 4-thread execution of HeatPlate.

Figure 14- Error in total execution cycles

Although different error contributors in the pipeline are not decoupled and

characterized, the amounts of miss rate error in L1, L2 and L3 are shown in Table 4,

Table 5 and Table 6. Errors in this metric are a good representation of overall error in the

memory subsystem model. The simulator memory model shows a variable error among

executions with different number of threads and benchmarks. Since each execution of a

benchmark takes days, multiple executions of benchmarks on the simulator was not

possible. However, comparing the total execution error and cache errors definitively

shows that the major source of error is not the cache hierarchy, but rather the pipeline.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

1 2 4 8 16

P
e

rc
e

n
ta

ge
 o

f
Er

ro
r

Number of Threads

GRAPH500

HeatPlate

SSCA2

66

Since the errors from other sources in pipeline are not needed to be characterized, more

investigation on other metrics is not done.

 1 2 4 8 16

L1 25.37% 16.74% 14.85% 9.60% 35.27%

L2 14.37% 11.69% 20.03% 12.81% 202.08%

L3 96.42% 17.79% 41.96% 26.25% 240.17%

Table 4- Error of Cache Miss Rate for Graph500

 1 2 4 8 16

L1 1.07% 0.55% 19.30% 1.12% 19.35%

L2 1153.65% 1565.24% 946.71% 205.28% 68.22%

L3 2501.13% 2030.20% 99.60% 99.82% 99.43%

Table 5- Error of Cache Miss Rate for HeatPlate

 1 2 4 8 16

L1 12.06% 57.55% 65.32% 98.15% 143.36%

L2 2069.18% 99.93% 98.91% 98.45% 96.40%

L3 7976.56% 5729.60% 99.46% 99.32% 138.75%

Table 6- Error of Cache Miss Rate for SSCA2

The simulator shows an unacceptable error in 8 cases, which are marked. If we do

not take these outliers into account, Figure 15 shows the average error of the cache miss

rate in each cache level for each benchmark. The executions of HeatPlate and single

67

threaded Graph500 show a very large error in L2 cache. We do not have any specific

explanation for this large error in the L2 cache model.

Figure 15- Average percent of error for each cache level

A large variable error in total execution cycles may cause error in overhead

calculations. For example, a single threaded Graph500, which is used as the baseline

performance of Graph500 (speedup=1) has an 80 percent error. This huge error in the

baseline can change the result whenever we are measuring the speedup. Also, we have to

measure the parallel and sequential portion of execution time from PGOMP in an actual

machine because we are not able to measure them in simulation. Consequently, any

deviation from actual machine timing may introduce an indistinguishable error to the

overhead calculation.

0%

50%

100%

150%

200%

250%

Graph500 HeatPlate SSCA2

P
e

rc
e

n
ta

ge
 o

f
Er

ro
r

L1

L2

L3

68

5.3 INSTRUMENTATION TOOL RESULTS

As we mentioned in 4.1, lock and barrier time can be profiled as the application

runs. An OpenMP instrumentation tool, PGOMP, is used to measure the barrier and lock

time in runtime. Through ten executions, the speedup is measured. The ideal speedup is

measured from Amdahl’s law, while the sequential and parallel execution times are

measured from PGOMP output. According to 2.3, overhead is calculated as the

performance loss. In other words, overhead is the time gap between ideal and measured

speedup. The lock overhead is the portion of this runtime overhead in which the

application is waiting for critical section or lock contention (omp_set_lock function).

Correspondingly, the barrier overhead is the percentage of performance loss in which

threads wait on barriers.

Table 7 shows all of the resultant data from PGOMP on the actual machine. A

scale of 16 is used for Graph500, a scale of 9 for SSCA2, and 300x300 points for

Heatplate. The residual overhead is solely the coherency overhead, if we assume there is

no other factor such as sequential variation overhead. Instead of calculating the sequential

variation overhead as in [14], we used the samples with the highest lock and barrier

overhead, which means the residual overhead is at a minimum. Moreover, Elfituri and

Cook illustrated in [14] that parallelization management code in the OpenMP framework

implementation does not contribute to performance loss. Consequently, this residual

overhead has to be coherency protocol overhead since nothing else is left.

69

Application

Number

of

Threads

Measured

Speedup

Ideal

Speedup

Barrier

Overhead

%

Lock

Overhead

%

Residual

Overhead %

Graph500 1 1 1 - - -

Graph500 2 1.695 1.946 35.81 0.00 64.19

Graph500 4 2.163 3.798 32.02 0.00 67.98

Graph500 8 3.709 7.327 42.86 0.00 57.14

Graph500 16 8.654 13.25 40.10 0.00 59.90

SSCA2 1 1 1 - - -

SSCA2 2 1.037 1.806 4.39 18.03 77.58

SSCA2 4 0.390 2.580 15.85 3.65 80.51

SSCA2 8 0.292 6.347 18.00 4.96 77.04

SSCA2 16 0.186 11.27 20.73 5.63 73.64

HeatPlate 1 1 1 - - -

HeatPlate 2 1.939 1.956 92.23 0.65 7.12

HeatPlate 4 3.489 3.557 85.78 1.86 12.36

HeatPlate 8 5.800 7.467 36.31 12.22 51.47

HeatPlate 16 6.440 13.80 34.93 5.18 59.89

Table 7- Contribution of barrier and lock to performance loss in actual machine

A comparison between barrier and lock overhead demonstrates that barrier

contribution to performance loss is larger than lock in these scales of benchmarks. Since

the simulator is not feasibly able to execute the benchmark in the available time, we have

70

to choose small scale benchmarks. This small dataset reduces the resource requirement

enough to allow parallelization, and increases the contribution of barrier overhead. Also,

as the execution time gets smaller, instrumentation noise has a bigger effect on the

profiling data. This may explain lock overhead in the 8-threaded execution of HeatPlate,

which disturbed its monotonic trend.

The last column shows an interesting behavior: Graph500 and SSCA2 both show

a high and almost constant amount of cache coherency overhead, while HeatPlate has an

increasing trend as we increase the number of threads. Finally, we can conclude that

cache coherency is the largest contributor to the performance loss in graph applications.

5.4 DIRECT MEASUREMENT OF COHERENCY PROTOCOL OVERHEAD

MARSSx86, used as an x86 cycle-accurate full system simulator, enables us to

directly measure the number of cycles that the cache has to spend to keep the cache data

coherent. As we explained in 2.4, two cases should be measured:

1. Read an invalidated data. In this case, the requested cache line is present in the

local cache, but it is invalidated by another processor. If the coherency issue did

not exist, this memory reference request would have been a hit. However, since

another processor invalidated this copy, it is a miss.

2. Read miss to shared data. In a single-core scenario, a miss in private cache is

handled by sending a request to a lower level of memory (toward main memory).

71

However, in an SMP scenario, the valid copy of this memory reference might be

either in lower memory or the other caches.

As soon as the memory request is made by any core, the request has been tracked,

and if it is one of those two cases, the number of cycles from request creation to data

delivery is recorded. Figure 16, Figure 17, and Figure 18 show the result of this MESI

overhead measurement (Total execution cycles as well as MESI overhead as a percentage

of total execution cycles are shown in Appendix C). Graph500 has a high and almost

constant overall MESI overhead, while HeatPlate and SSCA2 have a sudden burst on 4

threads and 8 threads. More importantly, in all benchmarks, the overhead is dominated by

invalidated shared data case. Read miss to shared data case has a monotonic increasing

trend in all of the benchmarks as we increase the number of threads. Also, in SSCA2 and

HeatPlate, an overall increasing trend can be seen in invalidated shared data case,

although an irregular sudden increase can be seen at some points, such as 4-threaded

execution of HeatPlate.

72

Figure 16- Graph500 MESI overhead

Figure 17- HeatPlate MESI overhead

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

9.00E+08

1.00E+09

1 2 4 8 16

N
u

m
b

e
r

o
f

C
yc

le
s

Number of Threads

Read Invalidated Data

Read miss to shared data

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

9.00E+08

1.00E+09

1 2 4 8 16

N
u

m
b

e
r

o
f

C
yc

le
s

Number of Threads

Read Invalidated Data

Read miss to shared data

73

Figure 18- SSCA2 MESI overhead

5.5 ANALYSIS OF INTERCONNECT

Since graph applications such as Graph500 and SSCA2 are expected to have a

large amount of un-core memory transfer, a drop in performance is expected as we

increase the number of threads and utilize more cores. Although MARSSx86 is not

designed to be a good interconnect model, we can still investigate some interesting facts

in its results.

First, we should notice that Westmere-EX has a data path to L1 cache that is 16

bytes wide in each direction. Moreover, there is a 256 bit internal data path between L1

and L2, and the critical word is transferred first when a cache line is transferred.

Consequently, the 8 byte data transfer delay is not different from the delay of 4-bytes

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

9.00E+07

1.00E+08

1 2 4 8 16

N
u

m
b

e
r

o
f

C
yc

le
s

Number of Threads

Read Invalidated Data

Read miss to shared data

74

transfer. Since MARSSx86 simulates x86 architecture, 4 bytes are transferred and then

the unused part is masked, regardless of the required data size.

However, transfer delay is expected to increase as the number of cores increases,

because more cores try to access the interconnect media to send or receive data. It is

expected that this problem will be exacerbated in graph applications, since they are data-

intensive applications with high amounts of data read, write and un-core data transfers.

In the case that a core tries to read invalidated data and has to wait for another

core to send a copy, we expect an increase in delay as the number of cores increases.

Figure 19 and Figure 20 illustrate how the delay grows as the number of cores increases,

and how the size of data is irrelevant since the data path is as big as 16 bytes. Figure 21,

on the other hand, shows delay of read invalidated shared in HeatPlate. Interestingly, this

plot does not show a high increasing slope as the number of threads increases. We see a

small growth when the number of threads is increased from 8 to 16, but since the number

of required transfers over time is not as large as a data-intensive application like

Graph500, we cannot see a large increasing slope in its plot.

75

Figure 19- Delay of read invalidated shared in Graph500

Figure 20- Delay of read invalidated shared in SSCA2

0

10

20

30

40

50

60

70

80

90

2 4 8 16

N
u

m
b

e
r

o
f

C
yc

le
s

Number of Threads

8 Bit

16 Bit

32 Bit

64 Bit

Average

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16

N
u

m
b

e
r

o
f

C
yc

le
s

Number of Threads

8 Bit

16 Bit

32 Bit

64 Bit

Average

76

Figure 21- Delay of read invalidated shared in HeatPlate

Levinthal [64] did a performance evaluation in Xeon 5500 series, which has up to

4 cores. He approximated the difference between L3 hit delay in the case where data is

shared and the case where the data is not shared by 25 cycles (~40 cycles if the cache line

is not shared and ~65 if the cache line is shared). This approximation is close to our result

from the MARSSx86 simulator, as the difference between the shared and unshared cache

line case is an average of 15 cycles and a maximum of 35 cycles.

5.5.1 WRITE TO SHARED DATA

The third case of overhead, write to a shared data, is discussed in 4.4. In a split-

phase bus media, data and snoopy traffic do not affect each other’s bandwidth. Since no

data transfer is needed in this case, it adds traffic only to snoopy bus. In a highly

parallelized application where the data is shared among many threads, a large number of

0

5

10

15

20

25

30

35

40

45

2 4 8 16

N
u

m
b

e
r

o
f

C
yc

le
s

Number of Threads

8 Bit

16 Bit

32 Bit

64 Bit

Average

77

store instructions may increase the traffic on snoopy bus and may challenge the

interconnect performance. We are able to measure the interconnect performance when the

snoopy messages increase. Nevertheless, we should consider the possibility that the

interconnect model is not accurate, and may be slightly different from the Westmere

interconnect.

After the invalidation request for a specific cache line is made, the media is

acquired and the message is sent to the other cores. Any receiver cache puts the request

into its queue and sends acknowledgement instantly. However, it takes time to invalidate

that specific cache line based on queue traffic and cache speed. We use the term

invalidation delay to refer to the gap in time between the creation of the invalidation

request and the time when the cache line state is actually changed to invalid. This

invalidation delay is measured for both the L1 and L2 caches. The invalidation delay

depends on the interconnect topology and performance, the length of the cache snoopy

message queue, and the cache delay. Figure 22 and Figure 23 show the invalidation delay

in L1 and L2 as we increase the number of threads.

78

Figure 22- L1 invalidation delay in write to shared data

Figure 23- L2 invalidation delay in write to shared data

If we look at the SSCA2 curve, we see that both of these plots show a larger delay

than Graph500 and HeatPlate. SSCA2 invalidation delay is also monotonically increasing

0

5

10

15

20

25

30

35

40

45

2 4 8 16

N
u

m
b

er
 o

f
C

y
cl

es

Number of Threads

Invalidation Delay of
L1 in HeatPlate

Invalidation Delay of
L1 in Graph500

Invalidation Delay of
L1 in SSCA2

0

10

20

30

40

50

60

70

80

2 4 8 16

N
u

m
b

er
 o

f
C

y
cl

es

Number of Threads

Invalidation Delay of
L2 in HeatPlate

Invalidation Delay of
L2 in Graph500

Invalidation Delay of
L2 in SSCA2

79

while the others are almost constant. This can be explained by the benchmark description

that we provided in 4.5. Graph500 does not include intensive store instructions because it

is a graph search, but SSCA2 contains many computation kernels, meaning that many

store instructions are involved in SSCA2 code. Moreover, HeatPlate is not a data-

intensive application, so a large amount of invalidation requests is not expected from it.

When CPU cores execute SSCA2, they issue a large amount of invalidation requests to

interconnect, causing the traffic to increase and exacerbating the delay. This can also

explain the sensitivity of the SSCA2 curve, which is due to the number of threads. As the

number of cores increases, more traffic is forced to interconnect, and this reduces the

interconnect performance.

5.6 PERFORMANCE RESULTS FROM SIMULATION

The goal of this paper is to directly measure what percent of overall overhead is

solely due to MESI protocol. Taking the execution time and the number of cycles which

are spent to keep the cache coherent from simulator, as well as the ideal speedup for each

number of threads from PGOMP output into account, and doing the same calculation

as 4.1 and 5.3 provides the results in Figure 24, Figure 25 and Figure 26. This result

almost validates the data from PGOMP. Considering the slightly high error in the total

execution cycles, results from PGOMP and MARSSx86 are close enough in most of the

cases. The minimum difference is in double-threaded execution of Graph500, where the

difference between calculated and simulated MESI overhead is only 0.06 percent. The

80

maximum difference is in 16-threaded execution of SSCA, where the difference is 65.3

percent. However, simulation results do not validate PGOMP results in three cases: 16-

threaded HeatPlate, 16-threaded SSCA2, and 16-threaded Graph500. SSCA2 is executed

with a scale of 9, which is very small for this benchmark. It is possible that

instrumentation noise changed the behavior and timing of the benchmark. At this small

scale and with such a large number of threads, barrier and lock overhead are more

expected. This means more investigations on PGOMP output for SSCA2 should be done.

Another reason that may cause this deviation in the 16-threaded execution of

benchmarks is error in the baseline of total execution cycles. As we increase the number

of threads and reduce the execution time, error can significantly change the amount of

overall overhead. Obviously, since the numbers are smaller in this number of threads, the

effect of error is even larger. Consequently, variable error may increase the overhead and

reduce the percentage. Then, although the number of wasted cycles increases, the error

leads to a smaller overhead percentage.

81

Figure 24- Measurement of MESI overhead in Graph500 from simulator

Figure 25- Measurement of MESI overhead in SSCA2 from simulator

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16

P
e

rc
e

n
ta

ge
 o

f
O

ve
rh

e
ad

Number of Threads

Barrier and Lock Overhead

MESI Overhead from
Simulation

Barrier Overhead

Lock Overhead

Calculated MESI Overhead

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16

P
er

ce
n

ta
g

e
o

f
O

v
er

h
ea

d

Number of Threads

Barrier and Lock Overhead

MESI Overhead from
Simulation

Barrier Overhead

Lock Overhead

Calculated MESI Overhead

82

Figure 26- Measurement of MESI overhead in HeatPlate from simulator

Besides 16-threaded execution of benchmarks, which has been discussed, the rest

of the cases validate the trend that results from the actual machine, although, compared to

instrumentation results, Graph500 has up to a 25 percent difference, HeatPlate up to a 20

percent difference, and SSCA2 has up to a 10 percent difference.

Table 8 shows the concluding results from putting together all the measurements

in simulator. The measured speedup column is calculated by total execution cycles from

simulator. MESI overhead percent column is the percent of contribution to performance

loss from the memory coherency protocol. The residual unobserved overhead must due to

lock and synchronization. We can conclude that the simulation confirms that MESI

protocol overhead is a major reason for performance loss in graph applications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16

P
e

rc
e

n
ta

ge
 o

f
O

ve
rh

e
ad

Number of Threads

Barrier and Lock Overhead

MESI Overhead from
Simulation

Barrier Overhead

Lock Overhead

Calculated MESI Overhead

83

Application

Number

of

Threads

Measured

Speedup

Ideal

Speedup

MESI

Overhead

%

Residual

Overhead %

Graph500 1 1 1 - -

Graph500 2 1.784 1.946 35.73 64.27

Graph500 4 3.376 3.798 13.98 86.02

Graph500 8 4.877 7.327 67.56 32.44

Graph500 16 7.027 13.25 73.99 26.01

SSCA2 1 1 1 - -

SSCA2 2 0.948 1.806 22.32 77.68

SSCA2 4 1.840 2.580 59.32 40.68

SSCA2 8 2.647 6.347 98.69 1.31

SSCA2 16 0.317 11.27 8.54 91.46

HeatPlate 1 1 1 - -

HeatPlate 2 1.922 1.956 6.50 93.50

HeatPlate 4 3.219 3.557 21.76 78.24

HeatPlate 8 6.884 7.467 44.61 55.39

HeatPlate 16 8.086 13.80 20.34 79.66

Table 8- Contribution of MESI overhead to performance loss in simulator

84

5.7 FUTURE WORK

To measure the overhead more accurately, several improvements can be done:

1. Besides using a more accurate simulator, more accurate benchmarking can

improve the reliability of results. If ptlcals were added inside the benchmark code

directly, we would be able to measure execution time and overhead specifically

for desired parts of code. This would allow a better approximation of parallel and

sequential parts, ideal speedup, and also measured speedup. This could

significantly improve accuracy.

2. The biggest constraint for simulations is time. Since it takes weeks to simulate a

benchmark at cycle-accuracy, we had to use small scale benchmarks. If we reduce

the accuracy by using only a cycle-accurate memory subsystem simulator instead

of a full system simulator, we will be able to simulate larger scales. Larger scale

benchmarks show more stable results and speedup. Also, as the execution times

grow, the effect of bash noise and instrumentation noise decreases, and profiling

software results are more reliable.

3. Using a core Performance Monitoring Unit (PMU) is another option. Many PMU

counters are not accurate enough to be used for quantitative calculation, especially

when we are looking for memory subsystem counters. Also, they may not directly

measure what we need. However, they may be more accurate than simulators, and

conclusions from different counters may help us to measure what we need.

85

4. The accuracy of PGOMP should be investigated. We do not know how accurate

PGOMP is and how much instrumentation error is forced to runtime execution.

Also, PGOMP is supposed to measure only the OpenMP function’s execution

time, but adding more time profiling, such as overall execution time, can improve

its accuracy. Also, profiling in number of cycles instead of time can improve

accuracy tremendously, since we can use PAPI output as well as PGOMP output.

5.8 SUMMARY

This chapter begins with an evaluation of a spatial locality metric for three

benchmarks: Graph500, SSCA, and HeatPlate. This metric showed that Graph500 and

SSCA, as graph benchmarks, have low levels of locality in comparison with the other

multithreaded applications. Simulator accuracy is discussed, along with its effect on final

results. Coherency protocol overhead is calculated by an instrumentation tool and

validated by direct measurement from the simulator.

86

6 CONCLUSION

Memory performance has not been improved by the same speed as processor

performance. This fact leads us to a tendency toward integrating caches – small, high

speed memories - into processors. We also prefer to organize algorithms and hardware to

take advantage of spatial and temporal locality to increase the performance of these

caches. Moreover, in a scenario where we have multiple processing units, we have an

additional complexity. Since some part of data has to be shared among these processing

units, they should follow a protocol to keep the data coherent. MESI is the most common

cache coherency protocol in multicore systems.

Graph benchmarks are known as applications with a low level of locality.

Graph500 and SSCA2 are graph benchmarks that are used in this paper. HeatPlate is

another multithreaded benchmark, which is used to represent regular parallel

applications. A simple normalized spatial locality metric is used to show how they have

different levels of locality. Graph500 and SSCA2 both showed very low spatial locality,

while HeatPlate showed a moderate spatial locality.

According to Amdahl’s law, we are able to increase the speed-up associated with

the parallel portion of application. However, measurements by instrumentation tools

showed that, even if we omit the sequential part, the ideal speedup is still unreachable.

This gap between ideal and measured speedup is named parallelization overhead. A

87

discussion about the source of this overhead has been made. Then, PGOMP as an

instrumentation tool is used to profile the OpenMP benchmarks.

Data from the simulator, as well as profiling data from the instrumentation tool in

actual machine cleared that barrier, critical section, and lock contention are the source of

20 to 93 percent of performance loss in our benchmarks. Considering possible reasons

that may cause such a performance loss, we can conclude that the residual percentage is

due to coherency protocol overhead.

Since cycle-accurate information from coherency protocols is unreachable in

actual machines, we used a cycle accurate simulator, MARSSx86, to directly measure

this coherency protocol overhead. The simulator showed a variable error in execution of

the three benchmarks. Simulator error in total execution cycles varied from 9 to 134

percent. This error can be root of further errors in overhead calculations.

Three cases are considered as MESI protocol overhead: read invalidate shared

data, read miss to shared data, and write to shared data. The last one cannot affect data

bandwidth. However, it is shown that a high amount of snoopy message traffic can

increase the invalidation delay up to 12 cycles in the SSCA2 benchmark, which has a

large amount of store operations. We also showed that MESI protocol overhead is

dominated by the read invalidated data case.

Finally, the same calculation as PGOMP data has been done on simulation results.

MESI overhead from simulation results are from 0.05 percent to 65 percent different

88

from PGOMP output. However, they validate the trend of the other set of data. They also

confirm that coherency protocol overhead is a large portion of overhead in the graph

benchmarks that we studied, since they are source of up to 90 percent of performance

loss.

89

APPENDIX A: MARSSX86 MACHINE CONFIGURATION FILE

core:

 ooo:

 base: ooo

 params:

 ISSUE_WIDTH: 5

 COMMIT_WIDTH: 4

 ROB_SIZE: 128

 ISSUE_Q_SIZE: 36

 ALU_FU_COUNT: 6

 FPU_FU_COUNT: 6

 LOAD_FU_COUNT: 1

 STORE_FU_COUNT: 1

 LOAD_Q_SIZE: 48

 STORE_Q_SIZE: 32

cache:

 l1_32k_8_:

 base: mesi_cache

 params:

 SIZE: 32K

90

 LINE_SIZE: 64 # bytes

 ASSOC: 8

 LATENCY: 4

 READ_PORTS: 2

 WRITE_PORTS: 1

 l1_32k_4_:

 base: mesi_cache

 params:

 SIZE: 32K

 LINE_SIZE: 64 # bytes

 ASSOC: 4

 LATENCY: 2

 READ_PORTS: 2

 WRITE_PORTS: 1

 l2_256k:

 base: mesi_cache

 params:

 SIZE: 256K

 LINE_SIZE: 64 # bytes

 ASSOC: 8

91

 LATENCY: 6

 READ_PORTS: 2

 WRITE_PORTS: 2

 l3_24M:

 base: wb_cache

 params:

 SIZE: 24M

 LINE_SIZE: 64 # bytes

 ASSOC: 24

 LATENCY: 27

 READ_PORTS: 2

 WRITE_PORTS: 2

memory:

 dram_cont:

 base: simple_dram_cont

machine:

 xeon1:

 description: Mix of OOO and Atom cores with private L2

 min_contexts: 1

92

 cores:

 - type: ooo

 name_prefix: ooo_

 option:

 threads: 1

 caches:

 - type: l1_32k_4_

 name_prefix: L1_I_

 insts: $NUMCORES

 option:

 private: true

 - type: l1_32k_8_

 name_prefix: L1_D_

 insts: $NUMCORES

 option:

 private: true

 - type: l2_256k

 name_prefix: L2_

 insts: $NUMCORES

 option:

93

 private: true

 last_private: true

 - type: l3_24M

 name_prefix: L3_

 insts: 1

 memory:

 - type: dram_cont

 name_prefix: MEM_

 insts: 1 # Single DRAM controller

 option:

 latency: 54 # In nano seconds

 interconnects:

 - type: p2p

 connections:

 - core_$: I

 L1_I_$: UPPER

 - core_$: D

 L1_D_$: UPPER

 - L1_I_$: LOWER

 L2_$: UPPER

94

 - L1_D_$: LOWER

 L2_$: UPPER2

 - L3_0: LOWER

 MEM_0: UPPER

 - type: split_bus

 connections:

 - L2_*: LOWER

 L3_0: UPPER

95

APPENDIX B: MARSSX86 CORE CONFIGURATION FILE

#ifndef OOOCORE_CONST_H

#define OOOCORE_CONST_H

#ifndef OOO_ISSUE_WIDTH

#define OOO_ISSUE_WIDTH 4

#endif

#ifndef OOO_MAX_PHYS_REG_FILE_SIZE

#define OOO_MAX_PHYS_REG_FILE_SIZE 256

#endif

#ifndef OOO_PHYS_REG_FILE_SIZE

#define OOO_PHYS_REG_FILE_SIZE 256

#endif

#ifndef OOO_BRANCH_IN_FLIGHT

#define OOO_BRANCH_IN_FLIGHT 24

#endif

#ifndef OOO_LOAD_Q_SIZE

#define OOO_LOAD_Q_SIZE 48

#endif

#ifndef OOO_STORE_Q_SIZE

#define OOO_STORE_Q_SIZE 48

96

#endif

#ifndef OOO_FETCH_Q_SIZE

#define OOO_FETCH_Q_SIZE 48

#endif

#ifndef OOO_ISSUE_Q_SIZE

#define OOO_ISSUE_Q_SIZE 64

#endif

#ifndef OOO_ROB_SIZE

#define OOO_ROB_SIZE 128

#endif

#ifndef OOO_FETCH_WIDTH

#define OOO_FETCH_WIDTH 4

#endif

#ifndef OOO_FRONTEND_WIDTH

#define OOO_FRONTEND_WIDTH 4

#endif

#ifndef OOO_FRONTEND_STAGES

#define OOO_FRONTEND_STAGES 4

#endif

#ifndef OOO_DISPATCH_WIDTH

97

#define OOO_DISPATCH_WIDTH 4

#endif

#ifndef OOO_WRITEBACK_WIDTH

#define OOO_WRITEBACK_WIDTH 4

#endif

#ifndef OOO_COMMIT_WIDTH

#define OOO_COMMIT_WIDTH 4

#endif

#ifndef OOO_ITLB_SIZE

#define OOO_ITLB_SIZE 32

#endif

#ifndef OOO_DTLB_SIZE

#define OOO_DTLB_SIZE 32

#endif

/* functional units */

#ifndef OOO_ALU_FU_COUNT

#define OOO_ALU_FU_COUNT 2

#endif

#ifndef OOO_FPU_FU_COUNT

#define OOO_FPU_FU_COUNT 2

98

#endif

#ifndef OOO_LOAD_FU_COUNT

#define OOO_LOAD_FU_COUNT 2

#endif

#ifndef OOO_STORE_FU_COUNT

#define OOO_STORE_FU_COUNT 2

#endif

#ifndef OOO_LOADLAT

#define OOO_LOADLAT 2

#endif

#ifndef OOO_ALULAT

#define OOO_ALULAT 1 /* ALU latency, assuming fast bypass */

#endif

/* max resources - Non configurable */

#define OOO_MAX_FU_COUNT 16

namespace OOO_CORE_MODEL {

 static const int MAX_THREADS_BIT = 4; /* up to 16 threads */

 static const int MAX_ROB_IDX_BIT = 12; /* up to 4096 ROB entries */

 /*

 * Operand formats

99

 */

 static const int MAX_OPERANDS = 4;

 static const int RA = 0;

 static const int RB = 1;

 static const int RC = 2;

 static const int RS = 3; /* (for stores only) */

 /*

 * Uop to functional unit mappings

 */

 const int FU_COUNT = OOO_MAX_FU_COUNT;

 const int ALU_FU_COUNT = OOO_ALU_FU_COUNT;

 const int FPU_FU_COUNT = OOO_FPU_FU_COUNT;

 const int STORE_FU_COUNT = OOO_STORE_FU_COUNT;

 const int LOAD_FU_COUNT = OOO_LOAD_FU_COUNT;

 const int LOADLAT = OOO_LOADLAT;

 const int ALULAT = OOO_ALULAT;

 /*

 * Global limits

 */

 const int MAX_ISSUE_WIDTH = OOO_ISSUE_WIDTH;

100

 /* Largest size of any physical register file or the store queue: */

 const int MAX_PHYS_REG_FILE_SIZE =

OOO_MAX_PHYS_REG_FILE_SIZE;

 // const int PHYS_REG_FILE_SIZE = 256;

 const int PHYS_REG_FILE_SIZE = OOO_PHYS_REG_FILE_SIZE;

 const int PHYS_REG_NULL = 0;

 enum { PHYSREG_NONE, PHYSREG_FREE, PHYSREG_WAITING,

PHYSREG_BYPASS,

 PHYSREG_WRITTEN, PHYSREG_ARCH, PHYSREG_PENDINGFREE,

MAX_PHYSREG_STATE };

 /*

 *

 * IMPORTANT! If you change this to be greater than 256, you MUST

 * #define BIG_ROB below to use the correct associative search logic

 * (16-bit tags vs 8-bit tags).

 *

 * SMT always has BIG_ROB enabled: high 4 bits are used for thread id

 */

#define BIG_ROB

 const int ROB_SIZE = OOO_ROB_SIZE;

101

 /* const int ROB_SIZE = 64; */

 /* Maximum number of branches in the pipeline at any given time */

 const int MAX_BRANCHES_IN_FLIGHT = OOO_BRANCH_IN_FLIGHT;

 /* Set this to combine the integer and FP phys reg files: */

 /* #define UNIFIED_INT_FP_PHYS_REG_FILE */

#ifdef UNIFIED_INT_FP_PHYS_REG_FILE

 /* unified, br, st */

 const int PHYS_REG_FILE_COUNT = 3;

#else

 /* int, fp, br, st */

 const int PHYS_REG_FILE_COUNT = 4;

#endif

 /*

 * Load and Store Queues

 */

 const int LDQ_SIZE = OOO_LOAD_Q_SIZE;

 const int STQ_SIZE = OOO_STORE_Q_SIZE;

 /*

 * Fetch

 */

102

 const int FETCH_QUEUE_SIZE = OOO_FETCH_Q_SIZE;

 const int FETCH_WIDTH = OOO_FETCH_WIDTH;

 /*

 * Frontend (Rename and Decode)

 */

 const int FRONTEND_WIDTH = OOO_FRONTEND_WIDTH;

 const int FRONTEND_STAGES = OOO_FRONTEND_STAGES;

 /*

 * Dispatch

 */

 const int DISPATCH_WIDTH = OOO_DISPATCH_WIDTH;

 /*

 * Writeback

 */

 const int WRITEBACK_WIDTH = OOO_WRITEBACK_WIDTH;

 /*

 * Commit

 */

 const int COMMIT_WIDTH = OOO_COMMIT_WIDTH;

 // #define MULTI_IQ

103

 // #ifdef ENABLE_SMT

 /*

 * Multiple issue queues are currently only supported in

 * the non-SMT configuration, due to ambiguities in the

 * ICOUNT SMT heuristic when multiple queues are active.

 */

 // #undef MULTI_IQ

 // #endif

#ifdef MULTI_IQ

 const int MAX_CLUSTERS = 4;

 /*

 * Clustering, Issue Queues and Bypass Network

 */

 const int MAX_FORWARDING_LATENCY = 2;

 static const int ISSUE_QUEUE_SIZE = 16;

#else

 const int MAX_CLUSTERS = 1;

 const int MAX_FORWARDING_LATENCY = 0;

 static const int ISSUE_QUEUE_SIZE = OOO_ISSUE_Q_SIZE;

#endif

104

 /* TLBs */

 const int ITLB_SIZE = OOO_ITLB_SIZE;

 const int DTLB_SIZE = OOO_DTLB_SIZE;

 /* How many bytes of x86 code to fetch into decode buffer at once */

 static const int ICACHE_FETCH_GRANULARITY = 16;

 /* Deadlock timeout: if nothing dispatches for this many cycles, flush the

pipeline */

 static const int DISPATCH_DEADLOCK_COUNTDOWN_CYCLES = 4096;

//256;

 /* Size of unaligned predictor Bloom filter */

 static const int UNALIGNED_PREDICTOR_SIZE = 4096;

 /* String names used in stats labels */

 extern const char* physreg_state_names[MAX_PHYSREG_STATE];

 extern const char* short_physreg_state_names[MAX_PHYSREG_STATE];

#ifdef MULTI_IQ

 extern const char* cluster_names[MAX_CLUSTERS];

#else

 extern const char* cluster_names[MAX_CLUSTERS];

#endif

 extern const char* phys_reg_file_names[PHYS_REG_FILE_COUNT];

105

};

#endif /* OOOCORE_CONST_H */

106

APPENDIX C: TOTAL EXECUTION CYCLES IN SIMULATOR

Figure 27- Graph500 total execution cycles in MARSSx86

Figure 28- HeatPlate total execution cycles in MARSSx86

0.00E+00

5.00E+09

1.00E+10

1.50E+10

2.00E+10

2.50E+10

3.00E+10

3.50E+10

1 2 4 8 16

To
ta

l E
xe

cu
ti

o
n

 C
yc

le
s

Number of Threads

MARSSx86

Westmere-EX

0.00E+00

2.00E+10

4.00E+10

6.00E+10

8.00E+10

1.00E+11

1.20E+11

1.40E+11

1.60E+11

1 2 4 8 16

To
ta

l E
xe

cu
ti

o
n

 C
yc

le
s

Number of Threads

MARSSx86

Westmere-EX

107

Figure 29- SSCA2 total execution cycles in MARSSx86

Figure 30- Graph500 MESI Overhead

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

1 2 4 8 16

To
ta

l E
xe

cu
ti

o
n

 C
yc

le
s

Number of Threads

MARSSx86

Westmere-EX

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

1 2 4 8 16

P
e

rc
e

n
ta

ge
 o

f
To

ta
l E

xe
cu

ti
o

n
 C

yc
le

s

Number of Threads

Read Invalidated Data

Read miss to shared data

108

Figure 31- HeatPlate MESI Overhead

Figure 32- SSCA2 MESI overhead

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

1 2 4 8 16

P
e

rc
e

n
ag

e
 o

f
To

ta
l E

xe
cu

ti
o

n
 C

yc
le

s

Number of Threads

Read Invalidated Data

Read miss to shared data

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

0.50%

1 2 4 8 16

P
e

rc
e

n
ta

ge
 o

f
To

ta
l E

xe
cu

ti
o

n
 C

yc
le

s

Number of Threads

Read Invalidated Data

Read miss to shared data

109

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative

approach. Morgan Kaufmann, 1996.

[2] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the

obvious,” ACM SIGARCH Comput. Archit. news, vol. 23, no. 1, pp. 20–24, 1995.

[3] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, Clock rate versus

IPC: The end of the road for conventional microarchitectures, vol. 28, no. 2.

ACM, 2000.

[4] M. R. Marty, Cache coherence techniques for multicore processors. ProQuest,

2008.

[5] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D.

A. Patterson, W. L. Plishker, J. Shalf, and S. W. Williams, “The landscape of

parallel computing research: A view from Berkeley,” Technical Report

UCB/EECS-2006-183, EECS Department, University of California, Berkeley,

2006.

[6] P. Stenstrom, “A survey of cache coherence schemes for multiprocessors,”

Computer (Long. Beach. Calif)., vol. 23, no. 6, pp. 12–24, 1990.

[7] R. Lawrence, “A Survey of Cache Coherence Mechanisms in Shared Memory

Multiprocessors,” Dep. Comput. Sci. Univ. Manitoba, Manitoba, Canada, 1998.

[8] D. J. Lilja, “Cache coherence in large-scale shared-memory multiprocessors:

110

Issues and comparisons,” ACM Comput. Surv., vol. 25, no. 3, pp. 303–338, 1993.

[9] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A. Wood, “Using

destination-set prediction to improve the latency/bandwidth tradeoff in shared-

memory multiprocessors,” in Computer Architecture, 2003. Proceedings. 30th

Annual International Symposium on, 2003, pp. 206–217.

[10] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood, “Bandwidth adaptive

snooping,” in High-Performance Computer Architecture, 2002. Proceedings.

Eighth International Symposium on, 2002, pp. 251–262.

[11] J. R. Goodman, “Using cache memory to reduce processor-memory traffic,” in

ACM SIGARCH Computer Architecture News, 1983, vol. 11, no. 3, pp. 124–131.

[12] “An Introduction to the Intel® QuickPath”, Intel, January 2009. [Online].

Available: http://www.intel.com/technology/quickpath/introduction.pdf

[13] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel® QuickPath

Interconnect Architectural Features Supporting Scalable System Architectures,”

High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on.

pp. 1–6, 2010.

[14] M. Elfituri, J.Cook, and J. Cook, “Characterizing Performance Issues in Shared

Memory Parallel Graph Benchmarks,” unpublished.

[15] M. E. Crovella and T. J. LeBlanc, “Parallel performance prediction using lost

cycles analysis,” in Proceedings of the 1994 ACM/IEEE conference on

http://www.intel.com/

111

Supercomputing, 1994, pp. 600–609.

[16] T. H. Dunigan, “Kendall Square multiprocessor: Early experiences and

performance,” Citeseer, 1992.

[17] M. Roth, M. J. Best, C. Mustard, and A. Fedorova, “Deconstructing the overhead

in parallel applications,” in Workload Characterization (IISWC), 2012 IEEE

International Symposium on, 2012, pp. 59–68.

[18] R. C. Kunz, “Performance bottlenecks on large-scale shared-memory

multiprocessors.” Citeseer, 2004.

[19] M. K. Prabhu and K. Olukotun, “Using thread-level speculation to simplify

manual parallelization,” ACM SIGPLAN Not., vol. 38, no. 10, pp. 1–12, 2003.

[20] S. V Adve and K. Gharachorloo, “Shared memory consistency models: A

tutorial,” Computer (Long. Beach. Calif)., vol. 29, no. 12, pp. 66–76, 1996.

[21] T.-F. C. T.-F. Chen and J.-L. B. J.-L. Baer, “Effective hardware-based data

prefetching for high-performance processors,” IEEE Trans. Comput., vol. 44,

1995.

[22] J.-L. Baer and T.-F. C. T.-F. Chen, “An effective on-chip preloading scheme to

reduce data access penalty,” Proc. 1991 ACM/IEEE Conf. Supercomput.

(Supercomputing ’91), 1991.

[23] B. Calder, C. Krintz, S. John, and T. Austin, “Cache-conscious data placement,”

ACM SIGOPS Operating Systems Review, vol. 32. pp. 139–149, 1998.

112

[24] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative

approach. Elsevier, 2012.

[25] C. Pyo, K.-W. Lee, H.-K. Han, and G. Lee, “Reference distance as a metric for

data locality,” in High Performance Computing on the Information

Superhighway, 1997. HPC Asia’97, 1997, pp. 151–156.

[26] K. Beyls and E. D’Hollander, “Reuse distance as a metric for cache behavior,” in

Proceedings of the IASTED Conference on Parallel and Distributed Computing

and systems, 2001, vol. 14, pp. 350–360.

[27] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation techniques for

storage hierarchies,” IBM Systems Journal, vol. 9. pp. 78–117, 1970.

[28] Q. Niu, J. Dinan, Q. Lu, and P. Sadayappan, “PARDA: A Fast Parallel Reuse

Distance Analysis Algorithm,” Parallel & Distributed Processing Symposium

(IPDPS), 2012 IEEE 26th International. pp. 1284–1294, 2012.

[29] C. Ding and Y. Zhong, “Predicting whole-program locality through reuse distance

analysis,” in ACM SIGPLAN Notices, 2003, vol. 38, no. 5, pp. 245–257.

[30] M. Snir and J. Yu, “On the theory of spatial and temporal locality,” 2005,

[Online]. Available: https://www.ideals.illinois.edu/handle/2142/11077

[31] A. Anghel, G. Dittmann, R. Jongerius, and R. P. Luijten, “Spatio-Temporal

Locality Characterization.” [Online]. Available:

http://www.cs.utah.edu/wondp/Anghel_Locality.pdf

113

[32] J. Weinberg, M. O. McCracken, E. Strohmaier, and A. Snavely, “Quantifying

locality in the memory access patterns of hpc applications,” in Proceedings of the

2005 ACM/IEEE conference on Supercomputing, 2005, p. 50.

[33] J. Hennessy, M. Heinrich, and A. Gupta, “Cache-coherent distributed shared

memory: perspectives on its development and future challenges,” Proc. IEEE,

vol. 87, no. 3, pp. 418–429, 1999.

[34] E. A. Emerson and E. M. Clarke, Characterizing correctness properties of

parallel programs using fixpoints. Springer, 1980.

[35] M. Chaudhuri and M. Heinrich, “The impact of negative acknowledgments in

shared memory scientific applications,” Parallel Distrib. Syst. IEEE Trans., vol.

15, no. 2, pp. 134–150, 2004.

[36] M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J. Baxter, J. P. Singh, R. Simoni, K.

Gharachorloo, D. Nakahira, and M. Horowitz, “The performance impact of

flexibility in the Stanford FLASH multiprocessor,” in ACM SIGPLAN Notices,

1994, vol. 29, no. 11, pp. 274–285.

[37] M. Heinrich, V. Soundararajan, J. Hennessy, and A. Gupta, “A quantitative

analysis of the performance and scalability of distributed shared memory cache

coherence protocols,” Comput. IEEE Trans., vol. 48, no. 2, pp. 205–217, 1999.

[38] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Memory performance

and cache coherency effects on an Intel Nehalem multiprocessor system,” in

114

Parallel Architectures and Compilation Techniques, 2009. PACT’09. 18th

International Conference on, 2009, pp. 261–270.

[39] L. Peng, J.-K. Peir, T. K. Prakash, C. Staelin, Y.-K. Chen, and D. Koppelman,

“Memory hierarchy performance measurement of commercial dual-core desktop

processors,” J. Syst. Archit., vol. 54, no. 8, pp. 816–828, 2008.

[40] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct cache access for high bandwidth

network I/O,” in ACM SIGARCH Computer Architecture News, 2005, vol. 33, no.

2, pp. 50–59.

[41] H. Montaner, F. Silla, H. Froning, and J. Duato, “Getting rid of coherency

overhead for memory-hungry applications,” in Cluster Computing (CLUSTER),

2010 IEEE International Conference on, 2010, pp. 48–57.

[42] Barroso, L.A., K. Gharachorloo, and E. Bugnion. 1998. “Memory System

Characterization of Commercial Workloads.” Proceedings. 25th Annual

International Symposium on Computer Architecture (Cat. No.98CB36235).

[43] P. Foglia, R. Giorgi, and C. A. Prete, “Simulation study of memory performance

of SMP multiprocessors running a TPC-W workload,” in Computers and Digital

Techniques, IEE Proceedings-, 2004, vol. 151, no. 2, pp. 93–109.

[44] P. Foglia, R. Giorgi, and C. A. Prete, “Performance analysis of electronic

commerce multiprocessor server,” in System Sciences, 2000. Proceedings of the

33rd Annual Hawaii International Conference on, 2000, p. 9–pp.

115

[45] C. A. Prete, G. Prina, and L. Ricciardi, “A trace-driven simulator for performance

evaluation of cache-based multiprocessor systems,” Parallel Distrib. Syst. IEEE

Trans., vol. 6, no. 9, pp. 915–929, 1995.

[46] J. S. Vetter, S. Lee, D. Li, and G. Marin, “Quantifying Architectural

Requirements of Contemporary Extreme-Scale Scientific Applications,” in

International Workshop on Performance Modeling, Benchmarking and

Simulation of HPC Systems (PMBS13).

[47] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury, and Y.

Sabharwal, “Breaking the speed and scalability barriers for graph exploration on

distributed-memory machines,” in High Performance Computing, Networking,

Storage and Analysis (SC), 2012 International Conference for, 2012, pp. 1–12.

[48] J. B. Angela, A. M. Floresb, J. S. Heritagec, N. C. Wardripd, A. M. Raime, M. K.

Gobberte, R. C. Murphyf, and D. J. Mountaing, “The Graph 500 Benchmark on a

Medium-Size Distributed-Memory Cluster with High-Performance Interconnect.”

[49] Z. Cui, L. Chen, M. Chen, Y. Bao, Y. Huang, and H. Lv, “Evaluation and

Optimization of Breadth-First Search on NUMA Cluster,” in Cluster Computing

(CLUSTER), 2012 IEEE International Conference on, 2012, pp. 438–448.

[50] Y. Yasui, K. Fujisawa, and K. Goto, “NUMA-optimized parallel breadth-first

search on multicore single-node system,” in Big Data, 2013 IEEE International

Conference on, 2013, pp. 394–402.

116

[51] M. Elfituri, J. Cook, and J. Cook, “Binary instrumentation support for measuring

performance in OpenMP programs,” in Software Engineering for Computational

Science and Engineering (SE-CSE), 2013 5th International Workshop on, 2013,

pp. 19–23.

[52] W. Alkohlani. “Statistical Performance Modeling Of Modern Out-Of-Order

Processors Using Monte Carlo Methods.” PhD diss., NMSU, 2014.

[53] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for computer

system modeling,” Computer (Long. Beach. Calif)., vol. 35, no. 2, pp. 59–67,

2002.

[54] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A cycle-level simulator for

highly detailed microarchitecture exploration,” in Performance Analysis of

Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on,

2009, pp. 53–64.

[55] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 microarchitectural

simulator,” in Performance Analysis of Systems & Software, 2007. ISPASS 2007.

IEEE International Symposium on, 2007, pp. 23–34.

[56] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.

Hestness, D. R. Hower, T. Krishna, and S. Sardashti, “The gem5 simulator,” ACM

SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

[57] [1] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: a full system

117

simulator for multicore x86 CPUs,” in Proceedings of the 48th Design

Automation Conference, 2011, pp. 1050–1055.

[58] A. Patel, F. Afram, H. Zeng, and K. Ghose, “MARSSx86-micro-architectural and

system simulator for x86-based systems.”

[59] M. E. Thomadakis, “The architecture of the Nehalem processor and Nehalem-EP

smp platforms,” Resource, vol. 3, p. 2, 2011.

[60] M. E. Thomadakis. A Westmere Addition to a High-Performance Nehalem

iDataPlex Cluster and DDN S2A9900 Storage for Texas A&M University, 2011.

[Online]. Available: http://sc.tamu.edu/systems/eos/Westmere-iDP.php

[61] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing the

graph 500,” Cray User’s Gr., 2010.

[62] D. Bader, K. Madduri, J. Gilbert, V. Shah, J. Kepner, T. Meuse, and A.

Krishnamurthy, “Designing scalable synthetic compact applications for

benchmarking high productivity computing systems,” Cyberinfrastructure

Technol. Watch (Nov. 2006), 2006.

[63] M. J. Quinn, Parallel Programming, vol. 526. TMH CSE, 2003.

[64] D. Levinthal, “Performance analysis guide for intel core(TM) i7 processor and

intel xeon(TM) 5500 processors,” Intel Corporation, Tech. Rep. Version 1.0,

2009.

