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Memory performance has not improved at the same pace as processor 

performance. This fact has led to a tendency toward integrating caches in processors, 

making use of multiple small, high speed memories. To increase the performance of 

these caches, algorithms and hardware are organized to take advantage of spatial and 

temporal locality.  

In scenarios with multiple processing units, there is additional complexity 

since some data has to be shared among the various processing units. A protocol is 

required to keep this shared data coherent. MESI protocol and its variants are the 

most common cache coherency protocol in multicore systems. 

Graph applications are known for having low locality, and this lack of locality 

could be a major source of performance loss in these applications as the number of 

threads increases.  To quantify performance loss due to memory transfer, two graph 

benchmarks, Graph500 and SSCA2, and one regular parallel benchmark, HeatPlate, 

were chosen. First, the performance loss was characterized by an instrumentation 

tool, PGOMP. Then, the MARSSx86 simulator was used to directly measure the 



 

 

MESI overhead. Finally, results analysis showed that MESI overhead was the source 

of up to 80 percent of performance loss in these graph benchmarks. 
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1  INTRODUCTION 

Processor performance has been improving at roughly 60% per year. Memory 

access time, however, has improved by less than 10% per year [1]. This uneven 

development in processor and memory speed has introduced an issue known as the 

processor-memory performance gap or memory wall [2]. To alleviate performance 

degradation due to this issue, out-of-order processors and multilevel caches have been 

introduced [1]. Out-of-order and speculative instruction execution attempt to hide 

memory latency by keeping the pipeline full with instructions that are independent of 

stalled memory instructions. The overhead of these techniques is more complexity and 

power consumption in the processing unit. Conversely, multilevel cache hierarchy 

provides a fast but small on-chip memory, which means a smaller miss penalty than 

memory access time, while hit cost is low. Consequently, we tend to keep the data that 

we are going to use in the near future in the highest possible cache level, near the 

processor. Taking limited cache capacity into account, locality plays an important role in 

faster computation.   

In a multiprocessing system scenario, several processing units are integrated on a 

single chip or connected by a network. Each processor has its own private cache 

hierarchy and a shared cache at the lowest level of hierarchy. In this scenario, keeping 

data coherent between all caches and main memory is a significant issue. A coherency 

protocol should enable processors to communicate with each other and inform each other 
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about the most recent status of data. MESI and its variants are the most common 

coherency protocols which support write-back cache.  

The cost of this guaranteed coherency of the data includes overhead on the 

interconnect and memory hierarchy, as well as an additional logic that implements the 

coherency protocol. This overhead affects memory operation performance (average 

access time), memory interconnect traffic, and also energy consumption. Most 

importantly, this overhead limits the perfect scalability and speedup of the system. 

Moreover, since the whole idea behind using a cache hierarchy is to take advantage of 

spatial/temporal locality, a low level of locality in a particular workload exacerbates the 

coherency overhead. In Section 3.1, temporal and spatial locality is discussed in more 

detail. Also, more detailed information on bottlenecks, which limit scaling and speedup, 

is provided in section 2.3.  

1.1 MOTIVATION  

In computer science and mathematics, graphs are abstract data structures that 

model structural relationships among objects. They are now widely used for data 

modeling in application domains for which identifying relationship patterns, rules, and 

anomalies are useful. These domains include the web graph, social networks, the 

Semantic Web, knowledge bases, protein-protein interaction networks, and 

bibliographical networks, among many others. The ever-increasing size of graph-
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structured data for these applications creates a critical need for scalable systems which 

can efficiently process extremely large amounts of data.  

Considering the large execution time of graph applications and the demand for 

time and energy performance, the identification of performance bottlenecks is important. 

One of the inherent attributes of graph applications is the lack of the data locality. 

Consequently, a large amount of inter-processor data transfer is required to keep the data 

coherent. In this work, we quantify overhead associated with coherency in graph-based 

applications using a simulation. We attempt to show that a significant portion of total 

execution time is spent on coherence and coherence-related events, particularly for graph 

applications that are characterized by little spatial and temporal locality. In Section 2.1 

we focus on the MESI protocol in more detail and see why it forces overhead to parallel 

applications.  

Chapter 3 provides a comprehensive literature review on the application 

performance characterization of parallel application and overhead characterization. Then, 

in Section 3.3, we focus on literatures which attempt to characterize the performance of 

graph applications, and find that the literature does not provide enough profiling data and 

insight about performance characterization.  An especial gap is the role of coherency 

protocol in poor speedup of graph applications.  Therefore, we tried to provide more 

insight about performance bottlenecks and their effects on scaling by quantifying the 

influence of coherency protocol influence on speedup. In Chapter 4 , we define scaling 
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overheads in general and coherency overhead. Then, we explain why we have to use an 

accurate cycle simulator to measure coherency overhead. The methodology and more 

specific details about the simulator are discussed. The real-world machine and the 

simulator are fully explained, and the two are compared to show their commonalities and 

differences. In Section 4.4, our coherency overhead measurement in the simulator is fully 

explained.  Also, the examined graph benchmarks are briefly described in section 4.5.  

Finally, the achieved results are presented in Chapter 5 . This chapter starts with 

the locality evaluation of benchmarks. We use the metrics described in Section 2.1 to 

show that the examined graph benchmarks have a low level of locality. In Section 5.3, an 

instrumentation tool, PGOMP, is used to profile barrier, critical section, lock, and 

coherency protocol overhead. Then, in section 5.4, coherency protocol overhead is 

directly measured, characterized, and compared to PGOMP results. We show how many 

cycles are wasted by the MESI protocol and what fraction of wasted speedup is due to 

this overhead. In Chapter 6 , the conclusion is made and more applications of this 

analysis are discussed.     
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2  BACKGROUND 

2.1 MEMORY COHERENCY 

The existing techniques of increasing instruction level parallelism (ILP) are no 

longer able to track the performance and speed that Moor’s Law suggests. Energy, heat, 

and wire delay issues are the obstacles that obstruct the expected performance track [3].  

Therefore, processor vendors are now focusing on thread-level parallelism (TLP) by 

designing chips with multiple processors, known as Multicore or Chip-level 

Multiprocessors (CMP). By extracting higher-level TLP on multicores, performance can 

continue to improve. However, managing the technology issues, which are faced by 

increasing the performance of conventional single-core designs, is a problem [4]. A brief 

look at multiprocessor development trends shows an exponential increase in on-chip 

cores. This fast growth, combined with the growth rate of Moore’s Law, suggests the 

possibility that thousand-core CMPs may be produced in the near future [5].  

The shift toward multicore processors depends on parallel software and the 

shared-memory model to achieve continued exponential performance gains.  In the 

shared-memory model, all processors access the same physical address space. Since each 

processor has its own private cache hierarchy, copies of the same data are present in 

different caches at the same time. Therefore, a major problem in multiprocessors is 

providing a consistent view of memory for each processor. The cache coherence problem 

is a critical, performance-sensitive design point for supporting the shared-memory model. 
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Cache coherence mechanism should take care of (i) communication between processors 

and (ii) how the data transfers between the processors, caches and memory. Assuming the 

shared memory programming model remains prominent, future workloads will depend 

upon the performance of the cache coherent memory system [4]. Cache coherence 

protocol is a distributed algorithm, which is used to maintain coherency among all of the 

data copies. Various cache coherency protocols have been introduced [6, 7, 8]. The major 

difference between these protocols is in the performed action on a write.  

2.2 PROTOCOL STRATEGIES 

Cache coherency protocols can implement two different strategies depending on 

how each processor informs the other processors about modifications in its local cache. It 

can either invalidate the stale data and wait for next read to update, or send an update 

instantly. Furthermore, the protocol should implement a writing policy. In write through, 

memory is updated whenever a processor performs a write. In write-back, the memory 

can be updated in two ways: first, when another processor reads the same cache block; 

and second, when a processor with the only valid copy of the block replaces it. The 

second condition happens when the cache needs to evict the cache block. Making a 

correct decision about strategy can affect performance dramatically. The write-back 

invalidate approach is the mainstream approach in cache coherency protocols, but since 

the best approach depends on application, it is not always the best solution. 
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2.2.1 PROTOCOL IMPLEMENTATION 

In every read/write access, a permission should be checked to see whether a cache 

block is accessible for that memory operation or not. At any point in logical time, the 

permissions for a cache block can allow either a single writer or multiple readers. This 

permission mechanism is implemented by a set of cooperating finite state machines. So, 

for each defined access granularity, the hardware-implemented finite state machine 

checks certain conditions and performs the required action to keep that granularity 

coherent. The appropriate action is selected based on (i) issued memory operation and (ii) 

the state of the machine. The cache coherence is implemented in two schemes, snoopy 

and directory-based. To explain the reason behind the existence of these two schemes, 

understanding about different classes of multiprocessors is required.  

Symmetric Multiprocessors (SMP): In a SMP machine, the access latency of all 

memory space is the same (Figure 1). A multicore is an SMP system in which every core 

has access to the IO and memory and is treated equally by one common OS instance. 

Communication between caches and memory is achieved by using a broadcast 

mechanism. 
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Figure 1- SMP Machine 

Non-Uniform Memory Access (NUMA): In a NUMA machine, the memory access 

time depends on the memory location relative to the processor (Figure 3). As an 

extension to this definition, ccNUMA is a NUMA approach that takes advantage of 

coherent caches. An implemented Distributed Shared Memory (DSM) machine provides 

a single logical address space for all processors, as well as guaranteed coherent cache. 
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Figure 2- ccNUMA Machine 

In an SMP processor, assumption is visible traffic for each core. This means 

coherency messages are sent by broadcasting on the bus. By utilizing this feature, 

handling the protocol requires fewer hardware resources and can be implemented with 

relatively lower cost and space. Each core snoops the interconnect network, and changes 

the current state of state-machines based on the received messages. Obviously cores 

ignore a message if the corresponding memory block is not in their cache. This method is 

called snoopy cache. 

In DSM systems, processors (each processor can be multicore SMP) connect to 

each other by an inter-processors network. This network is a scalable network that uses 

multiple components. So, by broadcasting coherency messages on the network, the 

performance plunges. To have a direct access to take each memory block location instead 
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of broadcasting, an additional logic unit is required. This unit is called directory. In larger 

scales of on-chip processors, a combination of snoopy and directory-based approaches is 

used [9, 10]. This combination takes advantage of the lower request latency associated 

with snoopy protocol and the bandwidths savings associated with directory-based 

protocols. The decision between these two protocols is made in real-time based on recent 

network statistics. 

2.2.2 IMPLEMENTATION OF SNOOPY PROTOCOL 

The key to implementing an invalidate protocol using a snoopy scheme is the use 

of a broadcast medium. Snooping coherence on a bus was first proposed by Goodman 

[11]. To send invalidation, the core simply acquires the bus and puts the address and 

invalidation command on the bus. Obviously, if the bus is busy, it acts based on the 

specified communication protocol. All of the cores are snooping the bus. If the address, 

which is on the bus, exists in their caches, the appropriate action will be taken; otherwise, 

they ignore it. In cases where two cores are writing in the same memory reference and 

they try to put an invalidation message on the bus, serialization of write is important to 

guarantee program consistency. One implication forced by this serialization is that write 

to a shared block cannot be completed until the bus access is acquired. Thus, a 

serialization in block writing permission or serialized access to message medium should 

be enforced. 
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Figure 3- MESI finite machine 

The other implication in protocol is finding the most recent copy of an invalidated 

block on each cache read. The data read operation faces miss because of either 

invalidation or actual absence. Since the processor is constantly snooping the bus, it 

easily finds that the miss is because of an invalidation request by another cache, or it 

should wait for the lower memory level to reply with the data. In the invalidated block 

case, the processor cancels the request to lower level and waits for the other processors, 

which have the copy to reply back the correct copy. The additional complexity is between 

delay time of retrieving data from L3 and private caches of the other processors. 
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Consequently, invalidation protocols have to be implemented with a write-back scheme 

at the last level private cache for all processors. 

The invalidation is easy to implement. An added bit shows whether the block is 

dirty (invalid) or valid. The other state is when the data is shared between the cores; this 

helps the core to decide about invalidation generation in case of write operation. When 

the write operation happens to a shared block, the processor changes its state to modified 

state and puts the invalidation command for the associated address on the bus.  To avoid 

unnecessary invalidation messages on the bus, an exclusive state shows if only one copy 

of the data exists. This state is easily added by extra bits to the memory blocks. Snoopy 

MESI protocol is the standard name of this protocol (Figure 3). A further optimization is 

the addition of owner state, which distinguishes the case in which several copies exist and 

the actual copy in main memory is out of date. This state avoids unnecessary write backs 

in case there are other attempts to read the same address in the other cores when a core is 

reading a datum that another core is modifying. This protocol is called MOESI. MOESI 

state transition policy is described in Figure 4.  
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Figure 4- MOESI finite machine 

2.2.3 SNOOPY LIMITATIONS AND DIRECTORY SCHEME 

As the number of cores grows, or as the memory demand of each core grows, any 

centralized resource on the chip can be potentially a bottleneck [1]. Even utilizing a high 

bandwidth bus for current chips could not enable designers to support more than 8 to 10 

cores on a chip without experiencing an exponential drop in performance. Bus bandwidth 

is a bottleneck in snoopy since each coherency miss should be examine in the core. 

Besides Directory-Based scheme, one approach for a larger number of cores, commonly 

used in Xeon 700 and core i7, is a directory in the outermost cache (L3). This directory 

explicitly keeps track of references, which are in the cores of that processor. This method 
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cannot eliminate the bottleneck due to the shared bus between L3s [24]. This scheme is 

much simpler than directory-based, though.  

In directory-based cache, a hardware directory unit is added to each processor. 

This directory keeps the relevant information, such as which cache or sets of caches have 

copies of the block, whether it is dirty or valid, etc. For implementation purposes, a bit 

vector in the L3 cache keeps track of which private caches have that specific data block. 

This approach is used by Intel® QuickPath Technology, which is utilized in core i7 and 

Xeon [12, 13]. On its own, this solution is not scalable as a DSM system. Scalability 

implies distributed directory, but in a way that searching for a block does not force 

broadcasting on a network. The obvious solution is distributed directory along memory, 

but a restriction is required: for each block, one and only one specific directory is used. 

This scheme is shown in Figure 5 [24]. More details of this scheme are provided in many 

architecture books [1, 24]. 
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Figure 5- Directory-based scheme 

2.3 REVISITING AMDAHL’S LAW AND PERFORMANCE BOTTLENECKS  

The performance attributes are more complicated in a shared memory system. 

One of the most important expected features of parallelism is performance scalability 

[24]. According to Amdahl’s law, the speedup of a program using multiple processors in 

parallel computing is limited by the time needed for the sequential fraction of the 

program. The final speedup formula of Amdahl’s law is: 

𝑆(𝑁) =
1

(1 − 𝑃) + (
𝑃
𝑁
)
 

Equation 1 

 

Where P is the parallelizable fraction of program and N is the number of processor units 

[24]. Considering an ideal, fully parallel application, a speedup of two is expected after a 

100 percent increase in processors. Each program execution time can be broken into two 
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portions of parallel and sequential time. Execution of a program shows that even the 

speedup of isolated parallel portions is not equal to the expected speedup [14]. This 

means that additional overheads cause this drop in performance. 

Several papers study scaling degradation due to overheads. Crovella et al. [15] 

used a method called lost cycle analysis. They divided overhead into Load Imbalance, 

Insufficient Parallelism, Synchronization Loss and Communication Loss. All of these 

overheads are measured in a parallel FORTRAN application on a KSR1 system [16]. 

However, the communication loss, which is the subject of this paper, is approximated by 

assigning cycle numbers [16] to misses and hits and calculation by miss and hit rate.  

Recently, in a similar paper, Roth et al. [17] categorized overhead into work, 

delay and distribution.  In this classification, communication is under the Hardware Delay 

category, and since it cannot be measured by profiling software, it is measured as the 

remaining part of overhead. Roth et al. also tried to use this profiling data to improve 

performance by algorithm level changes.  

Kunz [18] classifies these overheads in three major categories. Equation 2 shows 

that parallel execution time can be separated into two portions of actual computation and 

overhead, which prohibits ideal scalability. Regardless of the machine architecture 

(ccNUMA or SMP), this overhead (sequential and parallel) can be categorized in three 

different groups of bottlenecks. The first group is overhead caused by the application 
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itself.  Machine architecture is the cause for the second group of overhead, and the 

interaction between machine and application causes the third group of overhead.  

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑁 = 𝑃𝑎𝑟𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑁 + 𝑆𝑒𝑞𝑇𝑖𝑚𝑒 + 𝑃𝑎𝑟𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑁  Equation 2 

We look at each bottleneck more accurately, and finally focus more on the coherency 

protocol overhead, as it is the subject of this paper. 

2.3.1 APPLICATION-CENTRIC BOTTLENECKS 

The characteristic of implemented parallel software is potentially a bottleneck. 

Although these bottlenecks might be relative to machine specifics such as memory size, 

processor speed, etc., they can still be recognized as an architecture independent 

bottleneck. Since these bottlenecks root in high-level algorithm restrictions, a solution is 

in algorithm-level change or compiler optimization methods. Compiler methods require 

very comprehensive information, and are not always possible or totally effective. We 

should consider that some inherent constraints prevent the application from being 

perfectly scalable. Insufficient parallelism, which leads us to Amdahl’s law for 

multiprocessors, is the most obvious one. By nature, an algorithm might have a sequential 

part, which is not parallelizable by any means. By implementing an algorithm, a 

programmer implicitly limits the potential speedup. This is obvious, and a larger data set 

means a higher level of available parallel resources, impacting the size of serial and 

parallel portions of the application [18].  
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As the number of processor units increases, a scalable speedup is desired. 

However, even solely for parallel portions, the algorithm might not be able to grantee the 

speedup scalability. Moreover, a level of communication between processors is required. 

Clearly, the algorithm and programmer determine the ratio of communication to 

computation. Some other performance bottlenecks are dependence on system call and I/O 

traffic, which originates in programming and the algorithm method that is used [18]. 

2.3.2 MACHINE DEPENDENT BOTTLENECKS 

Although the communication cost is categorized as an application-centric 

bottleneck, the execution of a parallel application shows a larger communication cost 

than the ideal cost expected from the algorithm. The reason behind this additional cost is 

the characteristics of architecture design. In most cases, performance optimization in this 

level requires information about some machine-specific features. Since we are looking to 

shared memory systems, block size can be a good example of reasons behind deviations 

from ideal communication cost. Memory organization uses a fixed block size to transfer 

memory references, simplifying access management and taking advantage of locality. 

Thus, transferring a word is done in the form of a bigger block of words. In a scenario 

where two processor units need the same block of memory or any resource such as page, 

etc., while they actually are accessing different sets of words within block memory, false 

sharing happens. False sharing can plummet the performance since it intensifies the 

communication dramatically [24]. In a less clear case for a programmer, false sharing 
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happens on an OS level granularity, e.g., a page. This case occurs when disjointed sets of 

data are organized in the same page. Typically, page-level false sharing occurs on pages 

that hold thread-private data. The programmer solves the problem by separating unshared 

data into separate pages or segments. Although the overhead is not completely omitted, it 

is negligible, especially considering this fact that the programmer benefits from spatial 

locality. Finding and removing false sharing is difficult to do by compiler. The location 

of the bottleneck in memory depends on the input size, proposed parallel algorithm, and 

OS placement decision. A proper memory system can mitigate these bottlenecks.  

2.3.3 APPLICATION-ARCHITECTURE HYBRID BOTTLENECKS 

This type of bottleneck is due to the interaction between software and 

architecture. These bottlenecks exist in all multiprocessors, but their effect on 

performance depends on the cost of the operation in hardware implementation and the 

overhead of the application interface. 

2.3.3.1 THREAD SYNCHRONIZATION 

In a multithread program, race condition between threads causes an unexpected 

and incorrect behavior. Thread synchronization mechanisms eliminate the race condition 

by managing the access to the shared data. The cost of barrier varies since it depends on 

the length of parallel sections across threads, and all threads should arrive to barrier 

before they continue execution. Parallel-section dependencies force an overhead to the 
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program, since all the treads experience the worst execution time before their arrival to 

barrier. High level parallel programming such as OpenMP implies barriers. A compiler 

might be able to check the barriers to make sure if they are necessary; however due to the 

complexity of such a test on barriers, which requires knowledge and changes in the high 

level algorithm, other approaches such as Thread level Speculation (TLS) are usually 

taken [19]. 

Software lock also degrades parallel performance. Wrong lock acquisition might 

change the behavior of a parallel program to serial. Moreover, lock acquisition by itself 

depends on the memory system, while the memory system speed in lock acquisition and 

release affects this bottleneck. However, hardware overheads are often very small 

compared to long critical section. A compiler might be able to detect non-critical regions 

inside the locked area and do something about them to shorten the critical section. For 

infrequent locks, an approach such as synchronization can be taken by the memory 

system [18]. 

2.3.3.2 Operating System Bottlenecks 

Thread scheduling is an important responsibility of an OS. This task guarantees 

memory protection and the availability of resources for all processes. Scheduling 

algorithms decide which thread should have the processor next. As the number of 

processing units increases, more variables should be taken into account. This means more 

scheduling overhead. This overhead rises even more in ccNUMA architectures because 
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scheduling and placement of threads is very critical in ccNUMA system and depends on 

more variables, such as the size and location of data. There are also bottlenecks 

associated with the scheduling of multiple multiprocessor scheduling. 

2.3.3.3 Communication 

In a parallel program, processing units have to communicate with each other for 

different reasons; this communication forces overhead to the execution time. The cost of 

this communication varies in time based on the parallel algorithm, data set organization, 

and architecture. The numbers of utilized cores, scheme (SMP, ccNUMA), and 

communication backbone (network bandwidth, routing, bus protocol and etc.) affect 

communication overhead. A specific architecture might cause a hot spot which 

exacerbates this overhead. Activities that generate communication, such as distributed 

address space and coherency communication, are good examples of this group. Naturally, 

the number of communication packets increases as the number of cores and available 

caches grows. This increase in available resources causes speedup and hides the cost, 

which is paid for communication. Thus, the ratio of communication to computation is an 

effective performance metric. As the ratio increases, the scalability of a system speedup 

diminishes. A higher communication-to-computation level effect is the same as 

insufficient parallelism.  
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In an SMP system, messages from the coherency protocol form the majority of 

network traffic. The focus of this paper is on coherency messages and their effect on 

expected speedup. In next part, MESI message overhead is studied more accurately. 

2.4  COHERENCY PROTOCOL OVERHEAD 

In general, cache is used to utilize the locality and reduce the gap between 

memory and processor unit. This obviously increases the performance of a single-core 

CPU. As we described at the beginning of this chapter, it is highly coupled with access 

patterns of the application and machine specifications [20]. Technology leaps in 

parallelism, multicore, and multiprocessor changed the calculation, though. Although a 

multiprocessor still takes advantage of locality, an overhead is forced to keep all the 

caches coherent. This overhead varies from one application to another, but is always 

visible as deviation from ideal performance. In an SMP system, the amount of messages 

and data that should be transferred between cores to keep the caches coherent depends on 

two different issues. First is the executed application memory pattern and data set size. 

Depending on how many of cores share same data, how often they want to write data, and 

the order they write and read, the number of required coherency messages and the 

amount of transferred data are affected. Second, the coherency protocol and memory 

organization influences the required amount of messages. 

 In the comparison of a single-core system with a multicore system, a few cases 

force extra communication and data transfer. Reviewing Figure 3, which shows a MESI 
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finite state machine, reveals three different cases where extra communication is needed to 

keep the memory required.  

1. Read an invalidated data. In this case, the cache line is present in the local cache, 

but it has been invalidated by another processor. If the coherency issue did not 

exist, this memory reference request would have been a hit. However, since 

another processor invalidated this copy, it is a miss. An invalidated copy might be 

the result of write on another copy, whether this copy was modified, shared, or 

exclusive. This case might happen in any level of private cache. When a private 

cache receives a request for a reference and finds it in the cache, it checks whether 

it is valid or invalidated. If it is invalid, miss is replied to processor, a request for 

that reference is posted on the bus (or broadcasted on network), and the core waits 

for updated data. Owner processor(s) reply back to the request for data.  

2. Read miss to shared data. In a single-core scenario, a miss in private cache is 

handled by sending a request to a lower level of memory (toward main memory). 

However, in an SMP scenario, the valid copy of this memory reference might be 

either in lower memory or the other caches.   When memory receives a request for 

a memory reference that is not present in the cache; it replies back miss and puts a 

miss message for that memory reference on the bus.  As a processor with a valid 

copy (Modified, Shared, or Owner) receives the message, it put data on the bus. 



 
 

24 

 

More issues in this case are solved in implementation, and more are discussed in 

next chapter.   

3. Write to shared data. Writing in a cache can be done either in write back or write 

through. Most of the memory hierarchies right now use the write back approach. 

This approach prevents the cache from engaging in the continuous updating of 

lower shared memory. Consequently, writing into a single core cache loads 

memory reference into the cache and writes into it, and updating only occurs 

when the reference is evicted from the private caches. Since cache write usually 

uses a write allocation approach, three conditions might happen: 

i. It is a cache miss and the data is not shared. This is a normal miss 

case and does not introduce any overhead. 

ii. It is a cache miss and the data is shared. In this case, write 

allocation approach requires loading memory reference before writing 

data. This case introduces an overhead in the same manner as read to 

shared data, which is explained in number two. In other words, the 

processor does an ld and st micro-operation for one store instruction. As 

the data is present in the cache, a situation such as cache hit, which is 

explained in iii, occurs.  

iii. It is a hit and the data is shared. In this case, there is a 

communication overhead because the processor has to inform the other 
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processors that this shared data is modified and their copy is no longer 

valid. This overhead is heavily dependent on architecture, network, and 

communication protocol.  

In this paper, we attempt to quantify the contribution of each of these cases to 

performance loss in graph benchmarks. 
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3  RELATED WORKS 

3.1 QUANTIFYING SPATIAL LOCALITY  

To alleviate the memory wall problem, an increasing fraction of microprocessor 

chips is devoted to caches. In memory hierarchy, higher levels of cache (closer to the 

processing unit) are smaller and faster than lower levels (which are farther from the 

processing unit). This fact leads us to a tendency toward loading data from the L1 cache, 

which is closest to the processing unit. However, the limited size of caches forces 

computer architects and programmers to make wiser decisions about where we store the 

data references and manage memory. Locality plays a major role in this decision making 

process. Two different terms of locality are Temporal and Spatial locality.  

1. Temporal locality means that, if a memory location is accessed, then it is 

likely to be accessed again in the near future. By looking into the cache access 

schema of different applications, it can be seen that some memory locations 

are accessed more frequently than others. Additionally, it can be seen that, for 

the same memory location, accesses are clustered in time. As a result, when a 

word is brought into the cache, there is a good likelihood that it will be 

accessed again before it is evicted. 

2. Spatial locality refers to the fact that memory locations that are physically 

near to each other are likely to be accessed nearby in time.  Clearly, spatial 

locality results from the fact that related values, such as fields of the same 
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record or neighbor elements of a matrix, are often stored in close proximity to 

each other. As a result, when a cache miss causes a memory line to be brought 

into the cache, there is a good likelihood that words in the line other than the 

one that caused the miss will be accessed as well. 

Historically, the data locality properties of programs have been studied for two 

different purposes: first, for a better understanding of program behavior (architecture 

independent behavior); and, second, for utilizing dynamic locality properties for 

prefetching [21, 22, 23]. The focus in this section is on program locality metrics, which 

represent the overall memory behavior of program. After gathering detailed statistics 

about spatial and temporal locality, it can be tempting to make a general decision, or 

comparisons such as: application A has more temporal locality than B. Although this 

reduction can be useful, it may be an oversimplification that discards information.   

Beyond the qualitative descriptions provided in computer architecture books [24], 

various locality characterization metrics have been proposed in literature. In terms of 

temporal locality, Pyo et al. [25] introduce reference distance as the total number of 

references between accesses to the same data. Beyls et al. [26] show that this metric 

cannot exactly predict cache behavior for fully associative caches, but an alternative 

metric is able to do so. The alternative metric is based on stack distance. Mattson et al. 

studied stack algorithms in cache management and defined the concept of stack distance 

in 1970 [27]. Applying the same concept as LRU stack distance, Reuse Distance is 
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defined as the number of distinct memory references between two successive references 

to the same location; reuse distance provides a quantification of the locality present in a 

data reference trace. This metric has two advantages [28]: 

1. LRU replacement policy or its variants are used in most of the caches. 

This means any distance (d) smaller than cache size (N) is accurately 

modeled as hit (d<N) and the rest as miss. 

2. Reuse distance measures the volume of the intervening data between two 

accesses and is always bounded by the size of physical data, while other 

metrics such as time distance can be unbounded.  

The major problem of this metric is the high cost of the analysis, which precluded 

its online use. Neu et al. [28] presented the first parallel algorithm to compute accurate 

reuse distances by analysis of memory address traces. Reuse distance is used as a metric 

in Ding and Zhong [29]. The same study [26] uses this locality characterization metric to 

analyze the distribution of the conflict and capacity misses in the execution of code 

generated by an EPIC compiler, and reasons on the impact of increasing parallelism in an 

application on the number of capacity misses. 

Weinberg et al. [32] represented temporal locality as a set of reuse distances and 

corresponding memory operation fraction. The memory operation fraction is calculated 

by reuse function (Equation 3), where reuse i denotes the fraction of dynamic memory 

operations with distance less than or equal to i. 
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An important parameter is to assign weight to the memory references at each 

reuse distance. For simplicity, this initial study employed a log scale where each memory 

reference is weighted by the log of its reuse distance with respect to the largest distance 

considered. Thus, the reuse function provides a single architecture-independent score for 

each reuse distance [32]. 

𝑓(𝑥) =
∑ ((𝑟𝑒𝑢𝑠𝑒2𝑖+1 − 𝑟𝑒𝑢𝑠𝑒2𝑖) ∗ 𝑙𝑜𝑔2(𝑁) − 𝑖)

𝑙𝑜𝑔(𝑁)

𝑛=0

𝑙𝑜𝑔2(𝑁)
 

Equation 3 

In terms of spatial locality, previous works have attempted to quantify it, mainly 

via scalar metrics that allow for easy ordering and/or clustering of applications in locality 

classes [30]. Weinberg el al. [32] defined spatial locality metric by assigning a 

proportional weight to the strides and ending up with one single score between 0 and 1 

(Equation 4). In this formula, 𝑆𝑡𝑟𝑖𝑑𝑒𝑖 denotes the fraction of total dynamic memory 

operations that are of stride length i. 

∑𝑆𝑡𝑟𝑖𝑑𝑒𝑖

∞

𝑖=1

/𝑖 
Equation 4 

We should consider that the spatial locality metric (which constitutes most spatial 

metrics) is hard to efficiently calculate in run-time [30]. All of the aforementions studies, 

however, tend to treat the spatial and temporal dimensions of locality as completely 

orthogonal to each other and thus only offer a pair of uni-dimensional scores. Anghel et 
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al. [31] propose to generalize these concepts and quantify the entire two-dimensional 

spatio-temporal locality characteristic of a program accurately.  

In this section, we focused primarily on the memory reference patterns of 

individual processors to their local memory. This means that literatures mentioned above 

are characterizing only locality through their own caches. Moreover, spatial and temporal 

localities exist in messages and inter-processor communication [32]. However, even these 

metrics can provide a good insight into the nature of our benchmarks. Consequently, the 

first step toward a better understanding of this interconnect locality is looking more 

accurately at the effect of inter-processor memory communication on machine 

performance. Then, we see why multiprocessors naturally weaken the existing locality 

and even force overhead to the machine. Next, cache coherency protocols are discussed, 

and the reason why inter-processor locality affects machine performance is explained.  

3.2 OVERHEAD CHARACTERIZATION 

Generally, coherent overhead can be represented by different metrics and 

measured for different architectures and schemes. In one of the earliest studies, Hennessy 

et al. [33] reviewed the key developments that led to the creation of distributed cache 

coherent shared memory.  They used a distributed coherent cache prototype (DASH) and 

compared local and remote access time. They concluded that scaling and speedup are 

going to be issues in DSM system very soon. In 1980, Emerson et al. [34] tried to 

characterize parallel applications for the purpose of coherency protocol overhead 
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estimation. They studied overhead of Barkely Ownership and Firefly protocols by 

simulating the generated parallel benchmark trace for 11 or 12 processors. The study tried 

to characterize the synchronization overhead as well as coherency protocol. Since the 

simulator in this study was not a full system simulator, they assigned a cost to each stage 

transition as an average cost. Also, memory size of transferred data was not taken into 

account, since they fixed the block size at 8 words. They finally concluded that write-

invalidate protocols have better performance than write-broadcast protocols. The overall 

calculated wasted cycles were 2% of total cycles.  

A number of works characterized the overhead issues on ccNUMA systems. 

Chanduri and Heinrich proposed a new DSM coherency protocol that does not require 

NAK messages [35]. They measured the detail overhead of NAK messaging in DSM as 

well as the characterization of lock, synchronization, and total memory operation 

(without further protocol cycle details). Heinrich et al [36] characterized detailed 

overhead of parallel application execution on a FLASH multiprocessor, including the 

overhead of exploited ccNUMA protocol.  

Kunz focused on large-scale multiprocessors and characterized and analyzed the 

execution bottlenecks of a parallel application on a FLASH system [18]. Beside operating 

system and synchronization overhead, Kunz used several protocol models for the same 

benchmark and justified the performance tradeoffs. Execution times of different protocols 

were compared, but the overhead times of the individual protocols were not measured.  
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Heinrich et al. [37] characterized cache coherency protocols in large scale shared 

memory processors where the overall performance critically depends on cache coherency 

protocol. They compared several NUMA distributed shared memory protocols and also 

Cache-only Memory Architecture (COMA). Since communication in a large scale 

multiprocessor is highly affected by network, coherency messaging was observed as the 

root of major differences between the performances of surveyed protocols. They finally 

concluded that finding optimal coherency protocol based on overhead data is difficult 

because a change in machine specifications (for example, cache size) can change the 

overhead of protocols even for fixed applications. 

Molka et al. [38] presented fundamental details on ccNUMA architecture on Intel 

Nehalem microarchitecture and its memory controller, Intel® QuickPath Interconnect.  In 

this paper, bandwidth and latency between different locations is profiled, including on-

chip cache latency and off-chip ccNUMA memory latency. This work did not 

characterize benchmark memory behavior or detail protocol overhead, but measured their 

effects on latency and bandwidth. With a similar approach, Peng et al. compared AMD 

Athlon64 and Intel Core 2 Duo [39]. They profiled the execution of STREAM and 

STREAM2 on an actual machine and recorded bandwidth and latency of memory access, 

but did not provide details on protocol performance and timing issues.  

Kumar and Huggahalli examined a specific kind of coherency protocols in a 

network traffic analyzer machine, which uses general-purpose processor containing 
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Intel® Core™ micro-architecture based processors [12]. They measured the wasted time 

in various protocols for coherent write and read between NIC (Network Interface Chip) 

and processor caches, using DCA (Direct Cache Access). They did not take cache 

coherency through cores into account, but they showed that for this specific coherency 

application, the system is mostly stressed by coherency overhead in 10 Gb/s bandwidth 

[40].  

Montaner et al. [41] decoupled the remote memory needed for computation from 

remote memory needed, due to limited space in a certain node in clusters. In this 

approach, OS hot-plugged support is required, and OS should be aware of free space in 

other nodes. Execution time was then measured, which showed how remote data transfer 

can cost overhead to the system. 

Borroso et al. characterized the performance of a specific memory system facing 

commercial workloads [42]. They looked at the performance of two commercial 

workloads, online transaction processing (OLTP) and decision support systems (DSS), on 

an alpha multiprocessor using both simulation and monitoring actual system. Their 

emphasis is primarily on the characterization of only those different aspects that are 

needed to see the trend of performance on different specification. Miss rate, sharing 

patterns, etc. in various cache sizes are studied. Borroso et al. mostly tried to characterize 

memory misses in detail such as false sharing, true sharing, replacement and cold misses.  
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Foglia et al investigate the performance of MIPS-based 4- and 6-processor 

systems using MESI coherency protocol facing Electronic Commerce applications [43, 

44]. They looked at false sharing and true sharing and portion of misses as well as 

invalidation miss percentage. Since they used a trace-based simulator [45], they could not 

provide any timing data regarding execution time overhead.  

The human conventional wisdom as well as results from these papers says that 

communication overhead is highly correlated with the specific application and its data-

intensiveness. The focus of this paper is on data-intensive graph applications. So, to 

continue, we talk more about graph applications and their characteristics. 

3.3 PERFORMANCE AND OVERHEAD OF GRAPH APPLICATIONS 

Vetter et al. [46] showed that extreme-scale applications have specific 

characteristics, some of which are expected and some of which contradict conventional 

wisdom. Their metrics are classified into two classes, computation and communication. 

Most of these metrics are measured for 12 HPC benchmarks including Graph500. Reuse 

distance and memory bandwidth as well as communication patterns are metrics which are 

studied. However, this paper does not provide complete data for graph benchmarks such 

as Graph500 or SSCA2, which are known for low locality.  

Checconi et al. [47] focused on reducing the scaling overhead of Graph500 on a 

NUMA machine by optimizing the algorithm. Using several optimization techniques, 
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especially those for mapping virtual processors to nodes, the BFS algorithm showed a 

better scalability, although the overheads were not measured independently. 

The execution of Graph500 on an 82-node cluster and the measurement of 

traversed edges per second (TEPS) as a performance measurement by Angel et al. [48] 

demonstrated Graph500 as a benchmark to measure a computer’s ability to efficiently 

access memory. Cui et al. [49] and Yasui et al. [50] showed that in the OpenMP/MPI 

hybrid model for multi-node and the OpenMP model for single node execution of 

Graph500, communication is the chief influence on performance (GTEPS), and the 

optimization of memory transfer can increase performance by 50 percent.  

3.4 SUMMARY AND RESEARCH CONTRIBUTION 

As we saw earlier, scalability is an expected feature in a parallel system, but 

various overheads reduce the ideal speedup as the number of processor units increases. 

Previous studies show that communication between cores is a very substantial factor in 

this speedup limitation. In a single core machine, cache hierarchy is a solution to alleviate 

memory wall. However, in a multicore system, these caches have to communicate with 

each other to keep the shared data coherent.  

Locality of data is a substantial factor in the amount of required communication.  

Spatial and Temporal locality are hard to quantify, and it gets worse when it comes to 

multicore processors. However, studies which are discussed at the end of this chapter 

showed that graph applications have a very low level of locality. In graph applications, 
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less locality leads processor units to more communication and more cache coherency 

overhead. Since most of the papers showed that such an overhead is large but did not 

quantify it, we quantified this overhead and investigated how it affects scalability.  

Since this kind of data is not available through software profiling, we have to use 

a cycle accurate simulator. This simulator has to be close to an actual machine to provide 

data, which can then be validated by data from a real-world machine. The methodology 

of our experiment is described in the next chapter, which also discusses the machine 

specifications, simulator specifications, how overhead is measured, and practical points 

about protocol. After measuring the number of cycles that coherency protocol wastes, we 

can calculate how much performance loss is directly correlated to coherency protocol. 



 
 

37 

 

4   METHODOLOGY 

4.1 QUALIFYING BASELINE PERFORMANCE AND OVERHEAD 

As we discussed previously, parallelization overhead appears when we increase 

the number of computation units. When this occurs, the execution time is not affected as 

much as the scaling factor. In this work, the definition of overhead is the deviation of 

execution time from ideal execution time. However, we should take into account that not 

all of the execution time can be diminished as scaling factor rules. According to Equation 

5, execution time is divided into two parts: parallel and sequential computation times. 

Amdahl’s law says the sequential part is not affected by scaling factor as we increase the 

number of parallel processing units. This sequential time limits the ideal speedup. 

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑁 = 𝑃𝑎𝑟𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑁 + 𝑆𝑒𝑞𝑇𝑖𝑚𝑒 Equation 5 

Consequently, we should know what fraction of a program is solely sequential 

and what fraction is parallelizable for a specific number of parallel processing units. This 

sequential time is measured for each individual benchmark on a real-world platform [14, 

51]. Now, our achievable speedup is less than the number of parallel processing units as 

we took into account that a fraction of the application is naturally non-parallelizable. 

This ideal speedup varies based on the parallelizable fraction of the program as it is also 

bounded by scaling factor.  

𝑃𝑎𝑟𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑁 = 𝑃𝑎𝑟𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑁 + 𝑃𝑎𝑟𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑁 Equation 6 
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The gap between the execution of the benchmark on the machine and the ideal 

execution time of the parallel program is what we call parallelization overhead (Equation 

6). Looking at Equation 7 and section 2.3, this overhead can be broken into different 

components.   

𝑃𝑎𝑟𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑁

= 𝐿𝑖𝑏𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑁 + 𝐵𝑎𝑟𝑟𝑖𝑒𝑟𝑇𝑖𝑚𝑒𝑁

+ 𝐿𝑜𝑐𝑘𝐶𝑆𝑇𝑖𝑚𝑒𝑁

+ 𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑦𝑇𝑖𝑚𝑒𝑁𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑁 

Equation 7 

In the previous section, we reviewed the direct measurement of each component 

in literature and showed that coherency overhead has been never measured for recent 

multicore processors, especially not directly and cycle-accurately. Using tools such as the 

PGOMP binary instrumentation tool [51] enables us to measure all of the overhead 

components directly, except the coherency time [14]. Consequently, one approach is to 

use the data collected by PGOMP to find all overhead portions except coherency 

overhead; the remaining part has to be coherency overhead [14].  

This work collects coherency protocol data directly. To directly measure the 

coherency overhead time, we need to access some additional underlying information 

beside the miss or hit rate, which are available through profiling tools. An alternative for 

collecting such data is using a cycle-accurate simulator. This cycle-accurate simulator has 

to be a full system simulator because we need to simulate the multicore processing unit, 
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interconnect and communication between cores, and memory hierarchy. The advantage 

of a full system simulator instead of only memory system simulator is a guaranteed match 

between real-world machine and simulated machine. A few problems are standing in the 

way of finding and using a cycle-accurate simulator: 

1. This simulator should simulate an existing architecture. Due to the extremely 

large development time of a simulator, not enough cycle-accurate simulators are 

available. Most cycle-accurate simulators are old, outdated, or obsolete. From the 

few cycle-accurate simulators, we need a simulator to simulate our existing x86 

real-world machine. Existing x86 simulators are Superscalar, Zesto, PTLsim, 

Gem5, and MARSSx86 [52]. Superscalar [53], Zesto [54], and PTLsim [55] are 

all single-core simulators. Gem5 [56] is a full system, which has limited support 

for x86 but does not support MMX or SSE instructions. MARSSx86 is an x86 

cycle-accurate simulator [57, 58]. It is a full system simulator and contains a 

cycle-accurate model for interconnect, memory controller, and memory hierarchy 

as well as multicore processor model. MARSSx86 uses PTLsim as a core model.  

This simulator suits our needs better than the other options. 

2. Validation and accuracy is a questionable issue. Since academic research usually 

studies relative performance improvement rather than the imitation of existing 

real-world systems, academic simulators are rarely validated against real-world 

machines. Even when they are validated, a huge error is shown. MARSSx86 is 
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one of the few simulators that are validated against actual machine. Simulation 

error varies among different metrics from 0 percent to 100 percent. We talk about 

validation in more detail in section 4.2. 

3. The biggest problem of cycle-accurate simulators is extremely long simulation 

time. While a real processor has a performance in the order of thousands of MIPS, 

a simulator has performance of one to hundreds of KIPS. The long simulation 

time issue is a critical issue, especially when a multicore simulator is used. This 

long simulation time may make the full system simulation impossible when the 

number of cores increases. MARSSx86 simulates about 160 KIPS for a single 

core [57]. This speed critically limits the size of application that we can simulate, 

so the benchmark should be selected wisely. Benchmark selection is discussed in 

section 4.5. 

4.2 SYSTEM VS SIMULATOR SPECIFICATION 

An Intel Xeon E7 2860 machine is used as the real-world platform. It has 10 cores 

on chip, which share a 24MB shared L3 cache, while each core has two levels of private 

caches. Detailed specifications are shown in Table 1. MARSSx86 is developed, which is 

very flexible to change configuration. We wrote our configuration to imitate Intel Xeon 

E7 2860. The configuration file is available in Appendix A. More information about 

memory hierarchy, such as latency, interconnect, and protocol of these two platforms is 

provided in section 4.3.2.2 and Table 3.  
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Processor Intel Xeon E7 2800 MARSSx86 

Code Name Westmere-EX - 

Cores 10 10 

Clock Rate 2.26 GHz 200KHz 

Max Ins Decode per Cycle 4 4 

ROB Size 128 128 

Int ALU 3 3 

FP Units 3 3 

LSQ Size 96 96 

L1D Cache 

32KB per core 

64 byte lines 

8-way set associative 

32KB per core 

64 byte lines 

8-way set associative 

L1I Cache 

32KB per core 

64 byte lines 

4-way set associative 

32KB per core 

64 byte lines 

4-way set associative 

L2 Unified Cache 

256KB per core 

64 byte lines 

8-way set associative 

256KB per core 

64 byte lines 

8-way set associative 

L3 Unified Cache 

24MB shared 

64 byte lines 

24-way set associativity 

24MB shared 

64 byte lines 

24-way set associativity 

Table 1- Real-world platform specification 
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MARSS community validated the simulator against Intel Xeon 5620 with 4 cores 

for benchmarks such as SPEC, STREAM and PARSEC (Table 2) [57, 58]. The IPC 

metric showed less than 2 percent variation for all the reported benchmarks. Caches and 

main memory round trip latency had a 1 percent error. CPU function unit latency was up 

to 91 percent different from the real-world machine.  

Table 2- Difference between real-world and simulated Intel XEON 5620 

Metric Maximum Difference 

IPC 200 % 

Cache Round Trip Latency 1 % 

Function unit latency 91 % 

IPC variance among different pthread configurations 0.4 % 

Since most differences are not very large, especially the difference in memory 

latency l, using MARSSx86 looks reasonable. In the result section, we will report our 

validation data. We continue with a brief explanation of the MARSSx86 structure, with 

focus on memory hierarchy. 

4.3 MARSSX86 STRUCTURE 

MARSSx86 is a tool for cycle-accurate full system simulation of the x86-64 

architectures, specifically multicore implementations. By using QEMU, MARSSx86 

provides a full system emulation environment with a model for chipset and peripheral. 

The detailed simulation of x86-64 ISA, which consists of detailed pipeline model, is done 
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through PTLsim. It also has a detailed model for coherent cache and on-chip 

interconnections. Both write-back and write-through schemes in caches at any level are 

supported. As coherency protocol options, MESI and MOESI are available. As an 

interconnect model, point-to-point, split-phase, on-chip bus, and the switch interconnect 

model are available. Also, it has a simple DRAM model that simulates bank conflicts and 

DMA channels [57, 58]. In Figure 6 [57], the general schema of simulation and 

interaction between simulator and emulator is shown. All the information provided in this 

section can be found in the PTLsim manual [55] and MARSSx86 documents [57, 58]. 

 
Figure 6- MARSS general schema 

4.3.1 CORE MODEL 

As a core model, MARSS uses PTLsim. PTLsim supports the full x86 instruction 

set with all extensions, including x86-64, SSE/SSE2/SSE3, MMX, and x87. Figure 7 

http://marss86.org/~marss86/images/1/16/Block_diagram.png
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shows the high level overview of PTLsim [52]. As PTLsim receives x86 instructions, it 

converts them to RISC-like instructions called uops (micro-operationa). This is the same 

as processors’ uop-translation stage, where each instruction is broken to one to four uops. 

Each of the 129 uops of PTLsim has three source registers and one destination register.  

Instantly after making uops, PTLsim pre-decodes them and call them transops. The only 

purpose of this early decode is faster simulation. Then, a group of transops make a basic 

block (BB). Each basic block is indexed by a structure, which includes virtual address 

and physical page frame number of first transop. In continuance, transop and uop can be 

used interchangeably. Each BB consists of 64 uops and terminates by condition operation 

or barrier operation. Then uops go through a pipeline, which has fetch, rename, dispatch, 

issue, complete, writeback, and commit stages. 

In the fetch stage, the simulator directly fetches pre-decoded micro-operations 

from the basic blocks, but simulates the Icache by probing the cache based on current 

virtual address. It probes the Icache and checks whether the current address of basic 

block is in the cache or a miss has happened. If a miss has happened, the simulator stalls 

the fetching. A branch predictor is used in this stage to predict the next uop when the 

simulator faces branch operation.  

The renaming stage starts by reading a configurable number of uops from the 

fetch buffer. The registers of these uops are mapped into two register files, Physical 

Register File (PRF) and a Retirement Register File (RRF). Then, these uops are placed in 
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a reorder buffer (ROB) and wait for the next stage. The number of cycles for renaming 

stages and the number of ROB entries are configurable.  

During the dispatch stage, the simulator dispatches a configurable number of uops 

from ROB into scheduling queues. There are four scheduling queues: three integer 

queues and one floating-point queue. The first integer queue serves an ALU and an 

ALUC, which handles multiplication and division as well as conditional operations. The 

second and third integer scheduling queues serve an ALU and an LSU which handles 

load/store operations. The floating-point queue is handled by several floating-point 

computation units.  

 

Figure 7- Micro architecture of PTLsim Out-of-Order core 
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In the issue stage, the oldest ready entry of each queue is issued to execution 

units. The maximum of one entry is issued and released from queue per cycle. A 

configurable delay rules how many cycles an uop stays in the execution unit. As you can 

see in 4.3.2, store uops become ready as soon as their addresses are computed, and may 

be issued before their stored data is available while the other uops become ready when all 

of their input operands are ready. In the complete stage, the simulator marks the uops, 

completing execution, and puts them on the forward-bus to send the results for the uops 

which are waiting for them. Then, in the writeback stage, PTLsim writes back the results 

into the physical register file (PRF). Finally, the simulator retires the uop and puts it into 

the retirement register buffer (RRB). An uop only commits when all the uops belonging 

to an instruction are completed and ready to commit. This guarantees atomicity of x86 

instructions. 

The Westmere pipeline is illustrated in Figure 8 [59, 60]. MARSSx86 cores are 

capable of being configured as close approximations Westmere cores. Although the core 

configuration is not our concern, the core configuration is available in Appendix B. Since 

we are simulating Westmere-EX, we are connecting 10 cores in the processor. 
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Figure 8- Core Schema in Westmere 

4.3.2 LOAD/STORE IN SIMULATOR VS. REALITY 

MARSSx86 tries to imitate real-world x86 architectures. Since our concerns are 

only how the load and store operations are issued and how they are handled by memory 

hierarchy, we can compare real hardware and the simulator in two parts: first, the 

procedure of issue stage for load/store and the sending request at the processor side; and, 

second, memory hierarchy and protocol implementation at memory side. 

4.3.2.1 Load/store handling in processor 

Load and store are issued by two special methods to handle their various 

dependencies. These dependencies can occur because some loads or stores may be 

overlapping. For example, in the PTLsim out of order model, a given store may merge its 
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data with a previous store in the program order. First, the physical address for load/store 

is generated by looking at TLB. TLB is also simulated and it may face miss. The TLB 

miss penalty is set by configurable delay. In this stage, some exceptions, such as page 

fault, are handled. After the generation of physical address, and the check for exceptions, 

the simulator checks the load store queue (LSQ) backward in time to the head of LSQ for 

any possible dependency. This ensures that a simulator that loads, and which may need to 

forward data from a store (store forwarding) always references exactly one store queue 

entry, rather than having to merge data from multiple smaller prior stores to cover the 

entire byte range being loaded. Store forwarding (SF) is implemented in Westmere as 

well as MARSSx86. SF means when a load data follows a store that reloads the data 

which is just written by the store into the memory, the micro-architecture can forward the 

data directly from the store to the load in many cases [59, 60]. This only happens after 

checking that: 

1. The store must be the last store to that address prior to the load; 

2. The size of the store must be equal to or greater than the size of data being loaded; 

and  

3. The load data must be completely contained in the preceding store. 

The other important practical issue is memory disambiguation.  A load instruction micro-

op may depend on a preceding store. Many micro-architectures block loads until all 

preceding store address are known. The memory disambiguator predicts which loads will 
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not depend on any previous stores. When the disambiguator predicts that a load does not 

have such a dependency, the load takes its data from the L1 data cache. Eventually, the 

prediction is verified. If an actual conflict is detected, the load and all succeeding 

instructions are re-executed.  

The current version of MARSSx86 always uses write-allocation [59, 60]. 

However, Intel64 architecture uses write-allocation scheme for most of the cases. This 

architecture does not write-allocate on a write miss when the write operation is non-

temporal. When data is streamed in and out of the processor, as the case may be with 

SIMD/vector operands, there is no need to store this data in the cache as it is not expected 

to be needed in the near future. Write allocate operations are costly, especially when the 

block slated to enter the cache would have to evict a modified block already resident in a 

conflicting cache location. The Intel compilers may select the non-temporal write 

operations when it is evident that the written data are streamed out of the processor. 

Finally, after handling exceptions and dependencies, the simulator sends the 

request to the memory hierarchy. Connections between cores, caches and main memory 

are configurable. Switch, bus, and split-phase bus are our options. In continuance, we 

look at the interconnect and memory hierarchy of the simulator and compare them to 

Westmere-EX.  
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4.3.2.2 Memory Hierarchy in MARSSx86 vs. Westmere-EX 

In Westmere architecture, each core has its own L1 and L2 private cache. Also 

Icache and Dcahce are separated from each other and have different associativity. Cache 

hierarchy in MARSSx86 has this flexibility to be configured, same as our real 

architecture. Table 3 shows different features of both memory hierarchies. The size and 

associativity of the simulator are set and completely match the real-world platform.  Still, 

some differences are inescapable.  

First, the currently available MARSSx86 version supports only inclusive cache 

hierarchy. In Westmere architecture, the L3 cache is inclusive (each memory reference in 

L1 and L2 has to be present in L3 as well) but L2 is non-inclusive (data references in L1 

are not necessarily present in L2). This difference is negligible because it is only the case 

for L2. Cache latency in Westmere is provided from [59, 60].  

Table 3– Memory hierarchy in Intel Xeon E7 2800 and MARSS 

Processor 
Intel Xeon E7 

2800 
MARSSx86 

L1D Private 

Cache 

32KB per core 

64 byte lines 

8-way set 

associative 

Latency: 3 

32KB per core 

64 byte lines 

8-way set associative 

Latency: 3 
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L1I Private 

Cache  

32KB per core 

64 byte lines 

4-way set associative 

Latency: 4 

32KB per core 

64 byte lines 

4-way set associative 

Latency: 4 

L2 Unified 

Cache 

256KB per core 

64 byte lines 

8-way set associative 

MESIF Protocol 

None-inclusive 

Latency: 10-12 

256KB per core 

64 byte lines 

8-way set associative 

MESI Protocol 

Inclusive 

Latency: 12 

L3 Unified 

Cache 

24MB shared 

64 byte lines 

24-way set 

associativity 

Writeback 

Inclusive 

Latency: 36-40+ 

24MB shared 

64 byte lines 

24-way set associativity 

Writeback 

Inclusive 

Latency: 36 

Second, the MARSSx86 interconnect and Westmere are not completely matched. 

Point-to-point, switch, bus, and split-phase bus are supported in MARSSx86. Point-to-

point does not have a queue, and it connects two components without any delay. This 

connection is used for the connection between private caches and cores. As the core 

schema shows in Figure 8, the connection between core, L1, and L2 can be simulated as 

point-to-point without any delay since the delay is already reflected in cache delay.  
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Figure 9- Core interconnects 

Figure 9 [12] illustrates the un-core interconnects in Westmere. In this processor, 

the un-core domain is essentially a shared last level L3 cache (LLC), a memory access 

chip-set (Northbridge), and a QPI socket interconnection interface [59, 60]. Cache line 

requests from the on-chip ten cores, from a remote chip, or from the I/O hub are handled 

by the Global Queue (GQ), which resides in the un-core (Figure 10 [60]). The GQ 

buffers, schedules, and manages the flow of data traffic through the un-core. A cross-bar 

switch assists GQ in exchanging data among the connected parts [59]. The operations of 

the GQ are critical for the efficient exchange of data within and among Westmere 

processor chips. The GQ contains 3 request queues for the different request types: 

 Write Queue, a queue for store memory access operations from the local cores; 

 Load Queue, a queue for load memory requests by the local cores; and 
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 QPI Queue (QQ), a queue for on-chip requests delivered by the QPI links. 

 
Figure 10- Westmere-EP (6-cores) on-chip interconnect 

Westmere-EX has 4 Intel® QuickPath Interconnect (QPI) terminals, which can 

provide off-chip connection (Figure 11 [60]). QPI provides a fast point-to-point 

interconnect between chips, as illustrated in Figure 12 [60]. QPI provides a backbone and 

network protocols such as network layer abstractions and message packaging policy for 

efficient connection. The interconnect link pair operates two unidirectional links 

simultaneously, which gives a final theoretical raw bandwidth of 25.6 GB/s.   
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Figure 11- Westmere core off-chip interconnects 

In MARSSx86, Global Queue can be simulated by either split-phase bus or 

switch. It is important to note that in either of these network solutions, coherency 

protocol connection is not affecting data bandwidth. Also, QPI channels between 

processors can be simulated in MARSSx86 theoretically. However, since we did not use 

the second processor of our real-world platform and computation was kept on-chip, we 

do not need to simulate them.  
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Figure 12- QPI point-to-point connections 

The third issue is coherency protocol. Westmere is using snoopy protocol with a 

small directory part. This is same as what we explained in sections 2.2.2 and 2.2.3. QPI 

also provides a platform for processors to be able to snoop each other, and provides 

distributed directory-based protocol [12]. Westmere uses MESIF, which has one state 

more than regular MESI. A specific cache memory is chosen to store a shared block in 

the Forward state, and is allowed to forward it to other requesters. The presence of this 

state prevents the collision of data sent on the bus. On a switch network, it ensures that 

unnecessary packets are not sent to the data requester. However, MARSSx86 only 

provides snoopy MESI. The configured protocol in simulation is close to Westmere, but 

the controller is slightly different since the limited directory is not implemented.  
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Fourth, MESI protocol faces two practical difficulties. First, the atomicity of 

multistep miss process should be guaranteed [24]. Steps of an upgrade miss are miss 

detection and invalidation message generation, access to transmission media, and 

processing of the invalidation in the other processors. In a scenario where two processors 

try to update a cache line, this atomicity is crucial. This atomicity can be solved if the 

implemented platform guarantees delivery of the message as the processor accesses the 

network. Both the winner processor and the loser processor understand the situation, and 

stop or continue the process. This atomicity and guaranteed order is easily implemented 

in MARSSx86, since MARSSx86 uses a signal-event-callback approach. A second 

difficulty occurs in a write-back cache, where the data for a read or write miss can come 

either from memory or from one of the processor caches, but the requesting processor 

will not know a priori where the data will come from [24]. In most bus-based systems, a 

single global signal is used to indicate whether any processor has the exclusive (and 

hence the most up-to-date) copy; otherwise, the memory responds. These schemes can 

work with a pipelined interconnection by requiring that processors signal whether they 

have the exclusive copy within a fixed number of cycles after the miss is broadcast. This 

problem is also easily handled in simulation, since, when a cache or memory answers a 

request in the same cycle, the simulator checks all entries in the queue, and the other 

answers, which are not from the critical path (answers from coherent memory with higher 

delay), will be annulled.  
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4.4 COHERENCY OVERHEAD MEASUREMENTS 

For the purpose of coherency overhead measurement, we tracked x86 instructions 

from the top of the pipeline. Since the uop structure also has the information about the 

belonging instruction, it is possible to profile the application by size or category of 

instruction in the issue stage. We start tracking each instruction from load/store issue 

stage in the core model. As the processor sends the request to cache hierarchy, we check 

if it is one of the three cases, which we explained in section 2.4 as coherency overhead. 

By editing the request structure, we are able to track the request deep into the cache 

hierarchy. We also track the source and the size of the instruction to the end. 

When the cache controller receives the request, it starts to process the request. We 

are interested in three special cases, as we explained in section 2.4. In the first and second 

cases, which are Read an invalidated data and Read miss to shared data, we look at the 

state machine and mark the request when they happen. Due to the signal-even-callback 

nature of simulator, we finalize our measurement in the callback function of the data 

arrival signal. When the data which belong to our target request arrive into the processor, 

that signal will be triggered. We can collect the number of wasted cycles based on the 

size of requested memory as well. The other information is the sharing and 

communication pattern. This helps us to know what fraction of shared data is provided or 

invalidated by each core. 
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The third case is write to shared data.  Section 2.4 explained this case in detail 

and classified it in three categories. If it is a cache miss and the data is not shared, the 

request is not a coherency overhead. If it is a cache miss and the data is shared, since 

Westmere is using write allocate scheme, the wasted cycles are calculated in the read 

miss to shared data case because the simulator first brings the data to the cache and does 

that by handling the store uop as a load uop first. If it is a hit and the data is shared, the 

only overhead is snoopy overhead because no data is needed to transfer. As the simulated 

and real-world interconnect networks are split-phase, snoopy messages and data 

messages are not using the same media and consequently are not affecting each other’s 

bandwidth. In this case, the delay of updating status in lower memory hierarchy is 

measured.  

Finally, the time, which is measured as coherency overhead, is used for further 

calculations based on what we explained in 4.1. The data that is provided from the real-

world machine is used to see how much speedup is lost in scaling, and then the measured 

coherency overhead is used to see what fraction of it is due to the coherency overhead.  

4.5 BENCHMARKS UNDER EXAMINATION 

As we explained in section1.1 and 3.4, our focus is on parallel graph applications. 

As is shown in section 3.3, Graph applications have very low levels of locality and have 

many load/store operations. The memory footprints of graph applications are usually 
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large and random. All of the examined benchmarks use OpenMP for parallelization. 

Three different benchmarks are used to measure coherency overhead: 

1. Graph500 [61]: This benchmark is a compact application that has multiple 

analysis techniques accessing a single data structure, which represents a weighted, 

undirected graph.  This benchmark includes a scalable data generator, which 

randomly generates tuples containing the start vertex and end vertex of each edge. 

The second kernel performs a breadth-first search (BFS) over the graph. Overall, 

the benchmark goes through six steps: 

A. Generate the edge list. The scale factor determines the scale of data set. 

We used a scale of 16 for this benchmark. 

B. Construct a graph from the edge list (kernel 1). The vertex numbers are 

randomized, and a random ordering of tuples is presented to kernel 1. The 

generated list does not exhibit any locality to be exploited by computation 

kernels. 

C. Randomly sample 64 unique search keys. 

D. Search and compute the parent array (kernel 2). The performance of this 

kernel reflects (i) architecture throughput when executing concurrent 

threads, (ii) resilience to hot-spotting when many of the memory 

references are to the same location, (iii) the efficiency when each thread is 
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asynchronous side effect of others, and (iv) the effect of dynamic load 

balance unpredictability. 

E. Validate that the discovered array is correct. 

F. Compute performance information. 

2. SSCA2 [62]: This is a graph theory benchmark, which represents computational 

kernels of biology, complex network analysis, and national security. This 

benchmark is based on the HPCS Scalable Synthetic Compact Applications graph 

analysis benchmark. SSCA2 is characterized by integer operations, a large 

memory footprint, and irregular memory access patterns. It has multiple kernels 

accessing a single data structure representing a weighted, directed multigraph. In 

addition to a kernel to construct the graph from the input tuple list, there are three 

additional computational kernels to operate on the graph. Each of the kernels 

requires irregular access to the graph's data structure, and it is possible that no 

single data layout will be optimal for all four computational kernels. We used a 

scale of 9 for this benchmark. 

3. HeatedPaled [63]: This algorithm is one of the regular benchmarks of parallel 

applications. This code solves the steady state heat equation on a rectangular 

region. The region is covered with a grid of M by N nodes, and an N by N array is 

used to record the temperature. Every iteration, it solves the heat equation for all 

elements and calculates the difference in average temperature between four 
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corners of the grid. If the difference is less than an epsilon, it is in steady state and 

the calculation finishes. We used a 300 by 300 grid for this benchmark. 

4.6 SUMMARY  

In this chapter, we started with our definition of overhead, parallelization 

overhead and coherency overhead. We explained the detail of our simulated and real-

world platforms. We compared details of them in both processor side and memory 

hierarchy side. The obligatory and configurable differences and matches were depicted. 

At the end, the data collection and overhead calculation methodology were cleared and 

the examined benchmarks briefly described. In next chapter, we show the results of this 

measurement and calculation and show how coherency affects the scaling and speedup.   
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5  RESULTS 

This chapters starts with the measurement of a spatial locality metric that we 

explained in 3.1 to show that graph applications have low locality. In section 5.2 the 

validation results from the execution of Graph500, SSCA2 and HeatPlate are shown, and. 

The effect of simulator accuracy on final result is also discussed although in section 4.3, 

the validation results of MARSSx86 for PARSEC and SPEC benchmark are presented. 

Then, in 5.3, the barrier, lock, and coherency protocol overheads of benchmarks are 

measured by an instrumentation tool. In 5.4, 5.6, the coherency protocol overhead is 

directly measured and discussed.  

5.1 LOCALITY CHARACTERIZATION 

According to the discussion made in Section 3.1, we characterize the locality of 

our benchmarks using the spatial locality metric formula that is provided in Equation 4. 

This metric sums all of the strides by their size and outputs a number between zero and 

one. This locality metric is not an accurate measurement for locality; however, it can give 

us a good insight about how the graph benchmarks (SSCA2 and Graph500) are different 

from regular parallel applications.  

This locality metric is reported by Weinberg et al. [32] for several HPC 

benchmarks. In Figure 13, this spatial locality metric is illustrated for FFT, HPL, GUPS 

and STREAM. We measured this metric for three benchmarks that are used in this paper, 

and which are shown in Figure 13 as well. As we see, Graph500 has the lowest spatial 



 
 

63 

 

locality score. This confirms our claim that graph applications usually have very poor 

locality. On the other hand, HeatPlate, as a normal parallel application, has an acceptable 

locality.  

 
Figure 13- Spatial locality metric 

5.2 VALIDATION AND SIMULATOR ACCURACY 

The simulator is configured to imitate a Westmere-EX machine. However, since 

the detailed specifications of the CPU are not provided by vendors, a variable error is 

introduced to the system. This error varies as we change the number of threads and the 

benchmark, because we utilize a different number of cores and execute a different 

distribution of instructions. Since both pipeline and memory hierarchy (caches and 

interconnects) are modeled in a full simulator, the accuracy of both parts should be 

evaluated. It should be mentioned that these two errors are highly correlated. The 
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simulator is expected to have an execution time very close to the execution time of the 

actual machine. However, a combination of pipeline error and memory subsystem 

inaccuracy causes a variable error in execution time. A big source of pipeline inaccuracy 

is uop translation. As we explained in Section 4.3 each x86 instruction is broken into 

uops before entering into the pipeline. Since vendors do not provide detailed information 

about uops and the instruction translation process, the simulator has to choose its own 

uops, which can be different from actual Westmere uops.  

Moreover, memory subsystem error can also be reflected in execution time. 

Memory subsystem error has its roots in the misapproximation of cache delays and 

interconnect delays. Deviation from correct timing affects execution time. For example, if 

a cache line is not delivered on time, the pipeline stalls and the dependent instructions 

have to wait more. In a vicious chain of events, this also might cause more cache misses 

and more stalls.  

MARSSx86 shows a very unsteady error as we change the number of threads and 

benchmarks. In Figure 14, the percentage of absolute error between the actual machine 

and the MARSSx86 total execution cycles for all three benchmarks is illustrated. Since 

we did not change the source code of benchmarks and since ptlcalls (functions to 

communicate between simulator and host machine) are not added to the source code, the 

core with the longest execution determines the execution time of the benchmark. The 

thread affinity is guaranteed since the number of available cores is set as the number of 
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threads. The error is variable from 9.82 percent for the 4-thread execution of Graph500 to 

134.66 percent for the 4-thread execution of HeatPlate.  

 
Figure 14- Error in total execution cycles 

Although different error contributors in the pipeline are not decoupled and 

characterized, the amounts of miss rate error in L1, L2 and L3 are shown in Table 4, 

Table 5 and Table 6. Errors in this metric are a good representation of overall error in the 

memory subsystem model. The simulator memory model shows a variable error among 

executions with different number of threads and benchmarks. Since each execution of a 

benchmark takes days, multiple executions of benchmarks on the simulator was not 

possible. However, comparing the total execution error and cache errors definitively 

shows that the major source of error is not the cache hierarchy, but rather the pipeline. 
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Since the errors from other sources in pipeline are not needed to be characterized, more 

investigation on other metrics is not done. 

 1 2 4 8 16 

L1 25.37% 16.74% 14.85% 9.60% 35.27% 

L2 14.37% 11.69% 20.03% 12.81% 202.08% 

L3 96.42% 17.79% 41.96% 26.25% 240.17% 

Table 4- Error of Cache Miss Rate for Graph500 

 1 2 4 8 16 

L1 1.07% 0.55% 19.30% 1.12% 19.35% 

L2 1153.65% 1565.24% 946.71% 205.28% 68.22% 

L3 2501.13% 2030.20% 99.60% 99.82% 99.43% 

Table 5- Error of Cache Miss Rate for HeatPlate 

 1 2 4 8 16 

L1 12.06% 57.55% 65.32% 98.15% 143.36% 

L2 2069.18% 99.93% 98.91% 98.45% 96.40% 

L3 7976.56% 5729.60% 99.46% 99.32% 138.75% 

Table 6- Error of Cache Miss Rate for SSCA2 

The simulator shows an unacceptable error in 8 cases, which are marked. If we do 

not take these outliers into account, Figure 15 shows the average error of the cache miss 

rate in each cache level for each benchmark. The executions of HeatPlate and single 
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threaded Graph500 show a very large error in L2 cache. We do not have any specific 

explanation for this large error in the L2 cache model. 

 
Figure 15- Average percent of error for each cache level 

A large variable error in total execution cycles may cause error in overhead 

calculations. For example, a single threaded Graph500, which is used as the baseline 

performance of Graph500 (speedup=1) has an 80 percent error. This huge error in the 

baseline can change the result whenever we are measuring the speedup. Also, we have to 
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5.3 INSTRUMENTATION TOOL RESULTS 

As we mentioned in 4.1, lock and barrier time can be profiled as the application 

runs. An OpenMP instrumentation tool, PGOMP, is used to measure the barrier and lock 

time in runtime. Through ten executions, the speedup is measured. The ideal speedup is 

measured from Amdahl’s law, while the sequential and parallel execution times are 

measured from PGOMP output. According to 2.3, overhead is calculated as the 

performance loss. In other words, overhead is the time gap between ideal and measured 

speedup. The lock overhead is the portion of this runtime overhead in which the 

application is waiting for critical section or lock contention (omp_set_lock function).  

Correspondingly, the barrier overhead is the percentage of performance loss in which 

threads wait on barriers.  

Table 7 shows all of the resultant data from PGOMP on the actual machine. A 

scale of 16 is used for Graph500, a scale of 9 for SSCA2, and 300x300 points for 

Heatplate. The residual overhead is solely the coherency overhead, if we assume there is 

no other factor such as sequential variation overhead. Instead of calculating the sequential 

variation overhead as in [14], we used the samples with the highest lock and barrier 

overhead, which means the residual overhead is at a minimum. Moreover, Elfituri and 

Cook illustrated in [14] that parallelization management code in the OpenMP framework 

implementation does not contribute to performance loss. Consequently, this residual 

overhead has to be coherency protocol overhead since nothing else is left.  
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Application 

Number 

of 

Threads 

Measured 

Speedup 

Ideal 

Speedup 

Barrier 

Overhead 

% 

Lock 

Overhead 

% 

Residual 

Overhead % 

Graph500 1 1 1 - - - 

Graph500 2 1.695 1.946 35.81 0.00 64.19 

Graph500 4 2.163 3.798 32.02 0.00 67.98 

Graph500 8 3.709 7.327 42.86 0.00 57.14 

Graph500 16 8.654 13.25 40.10 0.00 59.90 

SSCA2 1 1 1 - - - 

SSCA2 2 1.037 1.806 4.39 18.03 77.58 

SSCA2 4 0.390 2.580 15.85 3.65 80.51 

SSCA2 8 0.292 6.347 18.00 4.96 77.04 

SSCA2 16 0.186 11.27 20.73 5.63 73.64 

HeatPlate 1 1 1 - - - 

HeatPlate 2 1.939 1.956 92.23 0.65 7.12 

HeatPlate 4 3.489 3.557 85.78 1.86 12.36 

HeatPlate 8 5.800 7.467 36.31 12.22 51.47 

HeatPlate 16 6.440 13.80 34.93 5.18 59.89 

Table 7- Contribution of barrier and lock to performance loss in actual machine 

A comparison between barrier and lock overhead demonstrates that barrier 

contribution to performance loss is larger than lock in these scales of benchmarks. Since 

the simulator is not feasibly able to execute the benchmark in the available time, we have 
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to choose small scale benchmarks. This small dataset reduces the resource requirement 

enough to allow parallelization, and increases the contribution of barrier overhead. Also, 

as the execution time gets smaller, instrumentation noise has a bigger effect on the 

profiling data. This may explain lock overhead in the 8-threaded execution of HeatPlate, 

which disturbed its monotonic trend.  

The last column shows an interesting behavior: Graph500 and SSCA2 both show 

a high and almost constant amount of cache coherency overhead, while HeatPlate has an 

increasing trend as we increase the number of threads. Finally, we can conclude that 

cache coherency is the largest contributor to the performance loss in graph applications. 

5.4 DIRECT MEASUREMENT OF COHERENCY PROTOCOL OVERHEAD  

MARSSx86, used as an x86 cycle-accurate full system simulator, enables us to 

directly measure the number of cycles that the cache has to spend to keep the cache data 

coherent. As we explained in 2.4, two cases should be measured: 

1. Read an invalidated data. In this case, the requested cache line is present in the 

local cache, but it is invalidated by another processor. If the coherency issue did 

not exist, this memory reference request would have been a hit. However, since 

another processor invalidated this copy, it is a miss. 

2. Read miss to shared data. In a single-core scenario, a miss in private cache is 

handled by sending a request to a lower level of memory (toward main memory). 
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However, in an SMP scenario, the valid copy of this memory reference might be 

either in lower memory or the other caches.    

As soon as the memory request is made by any core, the request has been tracked, 

and if it is one of those two cases, the number of cycles from request creation to data 

delivery is recorded. Figure 16, Figure 17, and Figure 18 show the result of this MESI 

overhead measurement (Total execution cycles as well as MESI overhead as a percentage 

of total execution cycles are shown in Appendix C). Graph500 has a high and almost 

constant overall MESI overhead, while HeatPlate and SSCA2 have a sudden burst on 4 

threads and 8 threads. More importantly, in all benchmarks, the overhead is dominated by 

invalidated shared data case. Read miss to shared data case has a monotonic increasing 

trend in all of the benchmarks as we increase the number of threads. Also, in SSCA2 and 

HeatPlate, an overall increasing trend can be seen in invalidated shared data case, 

although an irregular sudden increase can be seen at some points, such as 4-threaded 

execution of HeatPlate. 



 
 

72 

 

 
Figure 16- Graph500 MESI overhead  

 

 
Figure 17- HeatPlate MESI overhead 
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Figure 18- SSCA2 MESI overhead 
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transfer. Since MARSSx86 simulates x86 architecture, 4 bytes are transferred and then 

the unused part is masked, regardless of the required data size.  

However, transfer delay is expected to increase as the number of cores increases, 

because more cores try to access the interconnect media to send or receive data. It is 

expected that this problem will be exacerbated in graph applications, since they are data-

intensive applications with high amounts of data read, write and un-core data transfers. 

In the case that a core tries to read invalidated data and has to wait for another 

core to send a copy, we expect an increase in delay as the number of cores increases. 

Figure 19 and Figure 20 illustrate how the delay grows as the number of cores increases, 

and how the size of data is irrelevant since the data path is as big as 16 bytes. Figure 21, 

on the other hand, shows delay of read invalidated shared in HeatPlate. Interestingly, this 

plot does not show a high increasing slope as the number of threads increases.  We see a 

small growth when the number of threads is increased from 8 to 16, but since the number 

of required transfers over time is not as large as a data-intensive application like 

Graph500, we cannot see a large increasing slope in its plot. 
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Figure 19- Delay of read invalidated shared in Graph500 

 
Figure 20- Delay of read invalidated shared in SSCA2 
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Figure 21- Delay of read invalidated shared in HeatPlate 
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store instructions may increase the traffic on snoopy bus and may challenge the 

interconnect performance. We are able to measure the interconnect performance when the 

snoopy messages increase. Nevertheless, we should consider the possibility that the 

interconnect model is not accurate, and may be slightly different from the Westmere 

interconnect. 

After the invalidation request for a specific cache line is made, the media is 

acquired and the message is sent to the other cores. Any receiver cache puts the request 

into its queue and sends acknowledgement instantly. However, it takes time to invalidate 

that specific cache line based on queue traffic and cache speed. We use the term 

invalidation delay to refer to the gap in time between the creation of the invalidation 

request and the time when the cache line state is actually changed to invalid. This 

invalidation delay is measured for both the L1 and L2 caches. The invalidation delay 

depends on the interconnect topology and performance, the length of the cache snoopy 

message queue, and the cache delay. Figure 22 and Figure 23 show the invalidation delay 

in L1 and L2 as we increase the number of threads.  
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Figure 22- L1 invalidation delay in write to shared data 

 

 
Figure 23- L2 invalidation delay in write to shared data 
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while the others are almost constant. This can be explained by the benchmark description 

that we provided in 4.5. Graph500 does not include intensive store instructions because it 

is a graph search, but SSCA2 contains many computation kernels, meaning that many 

store instructions are involved in SSCA2 code. Moreover, HeatPlate is not a data-

intensive application, so a large amount of invalidation requests is not expected from it. 

When CPU cores execute SSCA2, they issue a large amount of invalidation requests to 

interconnect, causing the traffic to increase and exacerbating the delay. This can also 

explain the sensitivity of the SSCA2 curve, which is due to the number of threads. As the 

number of cores increases, more traffic is forced to interconnect, and this reduces the 

interconnect performance. 

5.6 PERFORMANCE RESULTS FROM SIMULATION 

The goal of this paper is to directly measure what percent of overall overhead is 

solely due to MESI protocol. Taking the execution time and the number of cycles which 

are spent to keep the cache coherent from simulator, as well as the ideal speedup for each 

number of threads from PGOMP output into account, and doing the same calculation 

as 4.1 and 5.3 provides the results in Figure 24, Figure 25 and Figure 26. This result 

almost validates the data from PGOMP. Considering the slightly high error in the total 

execution cycles, results from PGOMP and MARSSx86 are close enough in most of the 

cases. The minimum difference is in double-threaded execution of Graph500, where the 

difference between calculated and simulated MESI overhead is only 0.06 percent. The 
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maximum difference is in 16-threaded execution of SSCA, where the difference is 65.3 

percent. However, simulation results do not validate PGOMP results in three cases: 16-

threaded HeatPlate, 16-threaded SSCA2, and 16-threaded Graph500. SSCA2 is executed 

with a scale of 9, which is very small for this benchmark. It is possible that 

instrumentation noise changed the behavior and timing of the benchmark. At this small 

scale and with such a large number of threads, barrier and lock overhead are more 

expected. This means more investigations on PGOMP output for SSCA2 should be done.  

Another reason that may cause this deviation in the 16-threaded execution of 

benchmarks is error in the baseline of total execution cycles. As we increase the number 

of threads and reduce the execution time, error can significantly change the amount of 

overall overhead. Obviously, since the numbers are smaller in this number of threads, the 

effect of error is even larger. Consequently, variable error may increase the overhead and 

reduce the percentage. Then, although the number of wasted cycles increases, the error 

leads to a smaller overhead percentage.  
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Figure 24- Measurement of MESI overhead in Graph500 from simulator 

 

 
Figure 25- Measurement of MESI overhead in SSCA2 from simulator 
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Figure 26- Measurement of MESI overhead in HeatPlate from simulator 
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Application 

Number 

of 

Threads 

Measured 

Speedup 

Ideal 

Speedup 

MESI 

Overhead 

% 

Residual 

Overhead % 

Graph500 1 1 1 - - 

Graph500 2 1.784 1.946 35.73 64.27 

Graph500 4 3.376 3.798 13.98 86.02 

Graph500 8 4.877 7.327 67.56 32.44 

Graph500 16 7.027 13.25 73.99 26.01 

SSCA2 1 1 1 - - 

SSCA2 2 0.948 1.806 22.32 77.68 

SSCA2 4 1.840 2.580 59.32 40.68 

SSCA2 8 2.647 6.347 98.69 1.31 

SSCA2 16 0.317 11.27 8.54 91.46 

HeatPlate 1 1 1 - - 

HeatPlate 2 1.922 1.956 6.50 93.50 

HeatPlate 4 3.219 3.557 21.76 78.24 

HeatPlate 8 6.884 7.467 44.61 55.39 

HeatPlate 16 8.086 13.80 20.34 79.66 

Table 8- Contribution of MESI overhead to performance loss in simulator 
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5.7 FUTURE WORK 

To measure the overhead more accurately, several improvements can be done: 

1. Besides using a more accurate simulator, more accurate benchmarking can 

improve the reliability of results.  If ptlcals were added inside the benchmark code 

directly, we would be able to measure execution time and overhead specifically 

for desired parts of code. This would allow a better approximation of parallel and 

sequential parts, ideal speedup, and also measured speedup. This could 

significantly improve accuracy. 

2. The biggest constraint for simulations is time. Since it takes weeks to simulate a 

benchmark at cycle-accuracy, we had to use small scale benchmarks. If we reduce 

the accuracy by using only a cycle-accurate memory subsystem simulator instead 

of a full system simulator, we will be able to simulate larger scales. Larger scale 

benchmarks show more stable results and speedup. Also, as the execution times 

grow, the effect of bash noise and instrumentation noise decreases, and profiling 

software results are more reliable. 

3. Using a core Performance Monitoring Unit (PMU) is another option. Many PMU 

counters are not accurate enough to be used for quantitative calculation, especially 

when we are looking for memory subsystem counters. Also, they may not directly 

measure what we need. However, they may be more accurate than simulators, and 

conclusions from different counters may help us to measure what we need.  
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4. The accuracy of PGOMP should be investigated. We do not know how accurate 

PGOMP is and how much instrumentation error is forced to runtime execution. 

Also, PGOMP is supposed to measure only the OpenMP function’s execution 

time, but adding more time profiling, such as overall execution time, can improve 

its accuracy. Also, profiling in number of cycles instead of time can improve 

accuracy tremendously, since we can use PAPI output as well as PGOMP output. 

5.8 SUMMARY  

This chapter begins with an evaluation of a spatial locality metric for three 

benchmarks: Graph500, SSCA, and HeatPlate. This metric showed that Graph500 and 

SSCA, as graph benchmarks, have low levels of locality in comparison with the other 

multithreaded applications. Simulator accuracy is discussed, along with its effect on final 

results. Coherency protocol overhead is calculated by an instrumentation tool and 

validated by direct measurement from the simulator. 
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6  CONCLUSION 

Memory performance has not been improved by the same speed as processor 

performance. This fact leads us to a tendency toward integrating caches – small, high 

speed memories - into processors. We also prefer to organize algorithms and hardware to 

take advantage of spatial and temporal locality to increase the performance of these 

caches. Moreover, in a scenario where we have multiple processing units, we have an 

additional complexity. Since some part of data has to be shared among these processing 

units, they should follow a protocol to keep the data coherent. MESI is the most common 

cache coherency protocol in multicore systems. 

Graph benchmarks are known as applications with a low level of locality. 

Graph500 and SSCA2 are graph benchmarks that are used in this paper. HeatPlate is 

another multithreaded benchmark, which is used to represent regular parallel 

applications. A simple normalized spatial locality metric is used to show how they have 

different levels of locality. Graph500 and SSCA2 both showed very low spatial locality, 

while HeatPlate showed a moderate spatial locality.  

According to Amdahl’s law, we are able to increase the speed-up associated with 

the parallel portion of application. However, measurements by instrumentation tools 

showed that, even if we omit the sequential part, the ideal speedup is still unreachable. 

This gap between ideal and measured speedup is named parallelization overhead. A 
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discussion about the source of this overhead has been made. Then, PGOMP as an 

instrumentation tool is used to profile the OpenMP benchmarks.   

Data from the simulator, as well as profiling data from the instrumentation tool in 

actual machine cleared that barrier, critical section, and lock contention are the source of 

20 to 93 percent of performance loss in our benchmarks. Considering possible reasons 

that may cause such a performance loss, we can conclude that the residual percentage is 

due to coherency protocol overhead. 

Since cycle-accurate information from coherency protocols is unreachable in 

actual machines, we used a cycle accurate simulator, MARSSx86, to directly measure 

this coherency protocol overhead. The simulator showed a variable error in execution of 

the three benchmarks. Simulator error in total execution cycles varied from 9 to 134 

percent. This error can be root of further errors in overhead calculations.   

Three cases are considered as MESI protocol overhead: read invalidate shared 

data, read miss to shared data, and write to shared data. The last one cannot affect data 

bandwidth. However, it is shown that a high amount of snoopy message traffic can 

increase the invalidation delay up to 12 cycles in the SSCA2 benchmark, which has a 

large amount of store operations. We also showed that MESI protocol overhead is 

dominated by the read invalidated data case.  

Finally, the same calculation as PGOMP data has been done on simulation results. 

MESI overhead from simulation results are from 0.05 percent to 65 percent different 
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from PGOMP output. However, they validate the trend of the other set of data. They also 

confirm that coherency protocol overhead is a large portion of overhead in the graph 

benchmarks that we studied, since they are source of up to 90 percent of performance 

loss. 
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APPENDIX A: MARSSX86 MACHINE CONFIGURATION FILE 

core: 

  ooo: 

    base: ooo  

    params: 

      ISSUE_WIDTH: 5 

      COMMIT_WIDTH: 4 

      ROB_SIZE: 128 

      ISSUE_Q_SIZE: 36 

      ALU_FU_COUNT: 6 

      FPU_FU_COUNT: 6 

      LOAD_FU_COUNT: 1 

      STORE_FU_COUNT: 1 

      LOAD_Q_SIZE: 48 

      STORE_Q_SIZE: 32 

cache: 

  l1_32k_8_: 

    base: mesi_cache 

    params: 

      SIZE: 32K 
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      LINE_SIZE: 64 # bytes 

      ASSOC: 8 

      LATENCY: 4 

      READ_PORTS: 2 

      WRITE_PORTS: 1 

  l1_32k_4_: 

    base: mesi_cache 

    params: 

      SIZE: 32K 

      LINE_SIZE: 64 # bytes 

      ASSOC: 4 

      LATENCY: 2 

      READ_PORTS: 2 

      WRITE_PORTS: 1 

  l2_256k: 

    base: mesi_cache 

    params: 

      SIZE: 256K 

      LINE_SIZE: 64 # bytes 

      ASSOC: 8 
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      LATENCY: 6 

      READ_PORTS: 2 

      WRITE_PORTS: 2 

  l3_24M: 

    base: wb_cache 

    params: 

      SIZE: 24M 

      LINE_SIZE: 64 # bytes 

      ASSOC: 24 

      LATENCY: 27 

      READ_PORTS: 2 

      WRITE_PORTS: 2 

  

memory: 

  dram_cont: 

    base: simple_dram_cont 

machine: 

  xeon1: 

    description: Mix of OOO and Atom cores with private L2 

    min_contexts: 1  
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    cores: 

      - type: ooo 

        name_prefix: ooo_ 

        option: 

            threads: 1  

    caches: 

      - type: l1_32k_4_ 

        name_prefix: L1_I_ 

        insts: $NUMCORES 

        option: 

            private: true 

      - type: l1_32k_8_ 

        name_prefix: L1_D_ 

        insts: $NUMCORES 

        option: 

            private: true 

      - type: l2_256k 

        name_prefix: L2_ 

        insts: $NUMCORES 

        option: 
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            private: true 

            last_private: true 

      - type: l3_24M 

        name_prefix: L3_ 

        insts: 1 

    memory: 

      - type: dram_cont 

        name_prefix: MEM_ 

        insts: 1 # Single DRAM controller 

        option: 

            latency: 54 # In nano seconds 

    interconnects: 

      - type: p2p 

        connections: 

          - core_$: I 

            L1_I_$: UPPER 

          - core_$: D 

            L1_D_$: UPPER 

          - L1_I_$: LOWER 

            L2_$: UPPER 
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          - L1_D_$: LOWER 

            L2_$: UPPER2 

          - L3_0: LOWER 

            MEM_0: UPPER 

      - type: split_bus 

        connections: 

          - L2_*: LOWER 

            L3_0: UPPER  
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APPENDIX B: MARSSX86 CORE CONFIGURATION FILE 

#ifndef OOOCORE_CONST_H 

#define OOOCORE_CONST_H 

#ifndef OOO_ISSUE_WIDTH 

#define OOO_ISSUE_WIDTH 4 

#endif 

#ifndef OOO_MAX_PHYS_REG_FILE_SIZE 

#define OOO_MAX_PHYS_REG_FILE_SIZE 256 

#endif 

#ifndef OOO_PHYS_REG_FILE_SIZE 

#define OOO_PHYS_REG_FILE_SIZE 256 

#endif 

#ifndef OOO_BRANCH_IN_FLIGHT 

#define OOO_BRANCH_IN_FLIGHT 24 

#endif 

#ifndef OOO_LOAD_Q_SIZE 

#define OOO_LOAD_Q_SIZE 48 

#endif 

#ifndef OOO_STORE_Q_SIZE 

#define OOO_STORE_Q_SIZE 48 
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#endif 

#ifndef OOO_FETCH_Q_SIZE 

#define OOO_FETCH_Q_SIZE 48 

#endif 

#ifndef OOO_ISSUE_Q_SIZE 

#define OOO_ISSUE_Q_SIZE 64 

#endif 

#ifndef OOO_ROB_SIZE 

#define OOO_ROB_SIZE 128 

#endif 

#ifndef OOO_FETCH_WIDTH 

#define OOO_FETCH_WIDTH 4 

#endif 

#ifndef OOO_FRONTEND_WIDTH 

#define OOO_FRONTEND_WIDTH 4 

#endif 

#ifndef OOO_FRONTEND_STAGES 

#define OOO_FRONTEND_STAGES 4 

#endif 

#ifndef OOO_DISPATCH_WIDTH 
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#define OOO_DISPATCH_WIDTH 4 

#endif 

#ifndef OOO_WRITEBACK_WIDTH 

#define OOO_WRITEBACK_WIDTH 4 

#endif 

#ifndef OOO_COMMIT_WIDTH 

#define OOO_COMMIT_WIDTH 4 

#endif 

#ifndef OOO_ITLB_SIZE 

#define OOO_ITLB_SIZE 32 

#endif 

#ifndef OOO_DTLB_SIZE 

#define OOO_DTLB_SIZE 32 

#endif 

/* functional units */ 

#ifndef OOO_ALU_FU_COUNT 

#define OOO_ALU_FU_COUNT 2 

#endif 

#ifndef OOO_FPU_FU_COUNT 

#define OOO_FPU_FU_COUNT 2 
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#endif 

#ifndef OOO_LOAD_FU_COUNT 

#define OOO_LOAD_FU_COUNT 2 

#endif 

#ifndef OOO_STORE_FU_COUNT 

#define OOO_STORE_FU_COUNT 2 

#endif 

#ifndef OOO_LOADLAT 

#define OOO_LOADLAT 2 

#endif 

#ifndef OOO_ALULAT 

#define OOO_ALULAT 1 /* ALU latency, assuming fast bypass */ 

#endif 

/* max resources - Non configurable */ 

#define OOO_MAX_FU_COUNT 16 

namespace OOO_CORE_MODEL { 

    static const int MAX_THREADS_BIT = 4; /* up to 16 threads */ 

    static const int MAX_ROB_IDX_BIT = 12; /* up to 4096 ROB entries */ 

    /* 

     * Operand formats 
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     */ 

    static const int MAX_OPERANDS = 4; 

    static const int RA = 0; 

    static const int RB = 1; 

    static const int RC = 2; 

    static const int RS = 3; /* (for stores only) */ 

    /* 

     * Uop to functional unit mappings 

     */ 

    const int FU_COUNT = OOO_MAX_FU_COUNT; 

    const int ALU_FU_COUNT = OOO_ALU_FU_COUNT; 

    const int FPU_FU_COUNT = OOO_FPU_FU_COUNT; 

    const int STORE_FU_COUNT = OOO_STORE_FU_COUNT; 

    const int LOAD_FU_COUNT = OOO_LOAD_FU_COUNT; 

    const int LOADLAT = OOO_LOADLAT; 

    const int ALULAT = OOO_ALULAT; 

    /* 

     * Global limits 

     */ 

    const int MAX_ISSUE_WIDTH = OOO_ISSUE_WIDTH; 
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    /* Largest size of any physical register file or the store queue: */ 

    const int MAX_PHYS_REG_FILE_SIZE = 

OOO_MAX_PHYS_REG_FILE_SIZE; 

    //  const int PHYS_REG_FILE_SIZE = 256; 

    const int PHYS_REG_FILE_SIZE = OOO_PHYS_REG_FILE_SIZE; 

    const int PHYS_REG_NULL = 0; 

    enum { PHYSREG_NONE, PHYSREG_FREE, PHYSREG_WAITING, 

PHYSREG_BYPASS, 

        PHYSREG_WRITTEN, PHYSREG_ARCH, PHYSREG_PENDINGFREE, 

MAX_PHYSREG_STATE }; 

    /* 

     * 

     * IMPORTANT! If you change this to be greater than 256, you MUST 

     * #define BIG_ROB below to use the correct associative search logic 

     * (16-bit tags vs 8-bit tags). 

     * 

     * SMT always has BIG_ROB enabled: high 4 bits are used for thread id 

     */ 

#define BIG_ROB 

    const int ROB_SIZE = OOO_ROB_SIZE; 
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     /* const int ROB_SIZE = 64; */ 

    /* Maximum number of branches in the pipeline at any given time */ 

    const int MAX_BRANCHES_IN_FLIGHT = OOO_BRANCH_IN_FLIGHT; 

    /* Set this to combine the integer and FP phys reg files: */ 

    /* #define UNIFIED_INT_FP_PHYS_REG_FILE */ 

#ifdef UNIFIED_INT_FP_PHYS_REG_FILE 

    /* unified, br, st */ 

    const int PHYS_REG_FILE_COUNT = 3; 

#else 

    /* int, fp, br, st */ 

    const int PHYS_REG_FILE_COUNT = 4; 

#endif 

    /* 

     * Load and Store Queues 

     */ 

    const int LDQ_SIZE = OOO_LOAD_Q_SIZE; 

    const int STQ_SIZE = OOO_STORE_Q_SIZE; 

    /* 

     * Fetch 

     */ 
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    const int FETCH_QUEUE_SIZE = OOO_FETCH_Q_SIZE; 

    const int FETCH_WIDTH = OOO_FETCH_WIDTH; 

    /* 

     * Frontend (Rename and Decode) 

     */ 

    const int FRONTEND_WIDTH = OOO_FRONTEND_WIDTH; 

    const int FRONTEND_STAGES = OOO_FRONTEND_STAGES; 

    /* 

     * Dispatch 

     */ 

    const int DISPATCH_WIDTH = OOO_DISPATCH_WIDTH; 

    /* 

     * Writeback 

     */ 

    const int WRITEBACK_WIDTH = OOO_WRITEBACK_WIDTH; 

    /* 

     * Commit 

    */ 

    const int COMMIT_WIDTH = OOO_COMMIT_WIDTH; 

 // #define MULTI_IQ 
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 // #ifdef ENABLE_SMT 

      /* 

       * Multiple issue queues are currently only supported in 

       * the non-SMT configuration, due to ambiguities in the 

       * ICOUNT SMT heuristic when multiple queues are active. 

       */ 

 // #undef MULTI_IQ 

 // #endif 

#ifdef MULTI_IQ 

    const int MAX_CLUSTERS = 4; 

    /* 

     * Clustering, Issue Queues and Bypass Network 

     */ 

    const int MAX_FORWARDING_LATENCY = 2; 

    static const int ISSUE_QUEUE_SIZE = 16; 

#else 

    const int MAX_CLUSTERS = 1; 

    const int MAX_FORWARDING_LATENCY = 0; 

    static const int ISSUE_QUEUE_SIZE = OOO_ISSUE_Q_SIZE; 

#endif 
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    /* TLBs */ 

    const int ITLB_SIZE = OOO_ITLB_SIZE; 

    const int DTLB_SIZE = OOO_DTLB_SIZE; 

    /* How many bytes of x86 code to fetch into decode buffer at once */ 

    static const int ICACHE_FETCH_GRANULARITY = 16; 

    /* Deadlock timeout: if nothing dispatches for this many cycles, flush the 

pipeline */ 

    static const int DISPATCH_DEADLOCK_COUNTDOWN_CYCLES = 4096; 

//256; 

    /* Size of unaligned predictor Bloom filter */ 

    static const int UNALIGNED_PREDICTOR_SIZE = 4096; 

    /* String names used in stats labels */ 

    extern const char* physreg_state_names[MAX_PHYSREG_STATE]; 

    extern const char* short_physreg_state_names[MAX_PHYSREG_STATE]; 

#ifdef MULTI_IQ 

    extern const char* cluster_names[MAX_CLUSTERS]; 

#else 

    extern const char* cluster_names[MAX_CLUSTERS]; 

#endif 

    extern const char* phys_reg_file_names[PHYS_REG_FILE_COUNT]; 



 
 

105 

 

}; 

#endif /* OOOCORE_CONST_H */ 
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APPENDIX C: TOTAL EXECUTION CYCLES IN SIMULATOR 

 
Figure 27- Graph500 total execution cycles in MARSSx86  

 

 
Figure 28- HeatPlate total execution cycles in MARSSx86 
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Figure 29- SSCA2 total execution cycles in MARSSx86 

 
Figure 30- Graph500 MESI Overhead 
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Figure 31- HeatPlate MESI Overhead 

 
Figure 32- SSCA2 MESI overhead 
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