Inpainting The Colors

Alireza Nazari New Mexico State University Spring 2012

Contents

- Colorization Background
- Colorization review
- Inpainting Background
- Inpainting the Colors
- Poisson Equation/Solution
- Results

- Colorization is any process that adds color to black-and-white or monochrome still/moving images.
- Application:

- Image Editing
- Image compression
- Computerized colorization began in the 1970s with a process developed by Wilson Markle
- Problem: soft contrast and fairly pale, flat, washed out images

Colorization

- Based on Segmentation
 - Fuzzy edges segmentation
 - Object tracking (Foreground/Background Method)
 - Base on scribble

Example-based methods

Transferring color to grayscale images (Welsh et al. 2002)
 Shortcoming: spatial coherence

Convert source image to decorrelated $I\alpha\beta$ color space

- I: luminance
- $-\alpha$, β : chromatic channels (yellow/blue and red/green)
- Perform luminance remapping (histogram matching)
- Take ~200 color samples from the source image
- For each pixel in the target image (in scanline order):
- Find best matching source pixel (compare luminance and std. dev. of luminance values in neighborhood)
- Transfer color from source pixel to target pixel

Global procedure fails when corresponding colors don't have corresponding luminance values

✓ Colorization by example (Irony et al. 2005)

Stroke-based methods

✓ Colorization using optimization (Levin et al. 2004)

 Shortcomings: color leaking, too many strokes required for textured images

- ✓ Natural image colorization (Qing et al. 2007)
 - Handle images with non-contiguous textures
 - The user draws strokes indicating regions that (roughly)share the same color
 - Strokes are used for automatic texture segmentation
 - The user selects color for a few pixels in each region
 - Color is transferred automatically based on segmentation and selected colors

Inpainting Background

- Inpainting is the process of reconstructing lost or deteriorated parts of images and videos.
 - Restoration
 - Editing/Image Blending

Inpainting Methods

- Optimization base methods
 - Smooth propagation
- Propagation information
- Evalutionary form

 $\theta = \text{normalized gradient} \Rightarrow \theta \bullet \nabla I = \|\nabla I\|$ $\min(I) \int_{\Omega Y Band} \| \|\nabla I\| - \theta \bullet \nabla I \mid d\Omega$ $\nabla L \bullet \overset{\rightarrow}{\mathsf{N}} = \mathbf{0}$

$$\frac{\partial \mathbf{I}}{\partial \mathbf{t}} = \nabla \mathbf{L} \bullet \vec{\mathbf{N}}$$

Inpainting The Colors

- Main Idea is looking at colorization as an inpainting problem
- Chung and Sapiro have shown that the (scalar) luminance channel faithfully represents the geometry of the whole (vectorial) color image.(Edges)
- We work in Y Cb Cr
 - Y represented By intensity levels of grayscale image.
 - Changes in Cb and Cr will prepare the correct color.

Inpainting The Colors

 $Y(x,y): \Omega \to I\!\!R^+$ $Cb(x,y): \Omega \to I\!\!R^+$ $Cr(x,y): \Omega \to I\!\!R^+$ $|\Omega_c| << |\Omega|$ $\min_{Ch} \int_{\Omega} \rho(\|\nabla Y - \nabla Cb\|) d\Omega$ $\Delta Cb = \Delta Y$ $\Delta := \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \quad \nabla := \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$

Poisson Eq. Dif./Sol.

Poisson Equation:

In Euclidean space:

$$\nabla^2 \varphi = f$$

 $\Delta \varphi = f$

Cartesian space:

$$\begin{pmatrix} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \end{pmatrix} \varphi(x, y, z) = f(x, y, z)$$
Discrete Poisson:

$$(\nabla^2 u)_{ij} = \frac{1}{dx^2} (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{ij}) = g_{ij}$$

$$2 \le i \le m - 1 \text{ and } 2 \le j \le n - 1$$

Poisson Eq. Matrix:

$$\left[A\right]\left[U\right] = \left[b\right]$$

 $[U] = [u_{11}, u_{21}, \dots, u_{m1}, u_{12}, u_{22}, \dots, u_{m2}, \dots, u_{mn}]^T$

U=b/A

Scribbles are our Dirichlet boundaries.

My_Image_Coloring

File

- - -

24

My_Image_Coloring

