
Implementation of Effective Hardware-Based Data

Prefetching for High-Performance Processors

Alireza Nazari, AmirSaber Sharifi,Bo Gao

Computer Department

New Mexico State University

Las Cruces, New Mexico

Abstract— Due to progress pace of processors performance which

is higher than memory latency, need of functions which help to

reduce this gap is increasing every day. Hardware-Based data

prefetching is one of the approaches to make this gap smaller

than before. We decided to have a closer look at basic and

correlated prefetching and analyze how they will improve

performance in memory latency. Basic prefetching method tries

to provide prefetching by taking into account adjacent data

access by storing the strides and previous address while the

correlated approach tries to take advantage of not only the

adjacent accesses but also of those correlated changes in the outer

loop level.

In this paper, implementation and analyze of simulation in

GEMS–General Execution-driven Multiprocessor Simulator- are

taken into consideration. We simulated a 16-core system and

after modifying cache design in GEMS and adding Data

Prefetching into it, we analyzed data by using PARSEC 2.0

benchmark.

By evaluation of the result we observed that basic prefetching

scheme cannot be helpful on number of misses while correlated

scheme can reduce it in most of the cases. But anyway on a

multicore network neither have enhancement effect on speedup.

There still huge amount of data which can be analyzed in future

works.

Keywords—Hardware Prefetching, Multicore Simulator, High

Performance Processor

I. INTRODUCTION

Memory latency and bandwidth have progressed over the
last few years but at a much slower pace than processor
performance. To bridge this gap using more efficiently of cache
has been shown to be an effective way. Caches are used to
reduce main memory access however it cannot decrease
memory latency thus it is essential to find techniques to reduce
memory access as much as possible.

There are several techniques that would help in reducing
memory access and among these techniques data prefetching is
one of the techniques that ideally can make memory access
latency to zero [3]. There are two approaches for data
prefetching, software and hardware data prefetching. The
former should be done by compiler and needs a static program
analysis to detect regular data access pattern while the latter
detects accesses with regular patterns and issues prefetches at
run time. Both of these approaches have advantages and
drawbacks. To demonstrate how they really work in this paper
we will concentrate on hardware-based data prefetching [1].

Hardware-Based prefetching can be categorized into spatial
and temporal. The former is where access to the current block
the basis for the prefetch decision and the latter is where
lookahead decoding of the instruction stream is implied. There
are three approach to hardware-based prefetching which are
named, Basic, Lookahead and Correlated. The basis for the
three designs is an RPT - Reference Predication Table - that
holds data access patterns of load/store instructions and it is
organized as an instruction cache. In this paper our
concentration is on implementing basic and correlated design.

The basic idea of reference predication is to predict future
references based on history for the same memory access
instruction. When PC – program counter – detects a load/store,
there would be a check in RPT to see if there is an entry
corresponding to the instruction or not. If not, it would be
entered in the table. If it is there and the reference for the next
iteration is predictable a prefetch is issued. In the basic scheme
only PC and RPT are involved. As shown in figure 1 RPT and
it's states are illustrated [1].

Fig. 1. Reference Predication

In basic design, reference predication is based on the
regularity between adjacent data accesses. The key idea behind
correlated reference prediction is to keep track not only of
those adjacent accesses in inner loop, but also of those
correlated by changes in the loop level. Since branches in the
inner loop are taken until the last iteration, a not-taken branch
will trigger the correlation to the next level up. By adding a
shift register to record the outcome of the last branches and an
extended RTP with separate fields for computing the strides of
the various correlated accesses correlated design is

implemented. But to avoid prefetching too far in advance
correlation in two-level nested loops is a limitation in this
design. Figure 2 shows extended RPT which is used in
correlated design.

In this paper we will focus on these two designs and
implement them. Implementation has been done by GEMS
simulation by adding our customized file to a folder named
“ruby/system”. The most common file is CS573Prefetching.h
which is a header file that contains common data structures.
Then there are four files that implemented basic prefetching
algorithm and correlated mechanism. For basic design
BasicReferencePredictor.h, BasicReferencePredictor.C and for
correlated design two files, CorrelatedReferencePredictor.h,
CorrelatedReferencePredictor.C, are the files we implemented.
In section II design and implementation of these files and
related function are described more.

Fig. 2. Correlated RPT

The new cache design is simulated through SIMICS[4] and
PARSEC 2.0 benchmark to get metrics and analyze them. In a
configuration file which is used by SIMICS we configured
chips, caches and memories. In GEMS configuration file we
described number of cores, size of L1 cache, size and number
of L2 caches and interconnection network. To analyze data the
metrics we need number of issued prefetches and cache misses.
To count these numbers in our simulation we implemented a
customized profile under “ruby/profiler” with Profile.c and
Profile.h files. These two files help us to print number of issued
prefetches and cache misses in each core after of each
benchmark program. In section III these analysis and graphs
are shown and described more.

II. DESIGN

A. GEMS Structure and Simulation Configurations

As Figure 3 shows, the heart of GEMS is the Ruby memory
system simulator. As illustrated in Figure 3, GEMS provides
multiple drivers that can serve as a source of memory operation
requests to Ruby [2].

Ruby is a simulator of a multiprocessor memory system
that models: caches, cache controllers, system interconnect
memory controllers, and banks of main memory. Ruby
combines hard coded timing simulation for components such as
interconnection network which are independent of the cache
coherence protocol with the ability to specify the protocol-
dependent components such as cache controller in a domain-

specific language called SLICC (Specification Language for
Implementing Cache Coherence). SLICC is syntactically
similar to C or C++, but it is intentionally limited to constrain
the specification to hardware-like structures. For example, no
local variables or loops are allowed in the language.

Fig. 3. Ruby’s Structure and its drivers

One of the drivers on Ruby is SIMICS, which uses
SIMICS’ functional simulator to approximate a simple in-order
processor with no pipeline stalls. SIMICS passes all load, store,
and instruction fetch requests to Ruby, which performs the first
level cache access to determine if the operation hits or misses
in the primary cache. Ruby receives the requests and put them
in a FIFO manner. On a hit, SIMICS continues executing
instructions, switching between processors in a multiple
processor setting. On a miss, Ruby stalls SIMICS’ request from
the issuing processor, and then simulates the cache miss. So
while the SIMICS is executing the benchmark in a multi core
manner, ruby simulates the memory behavior to send SIMICS
the stalls due to the memory. Each processor can have only a
single miss outstanding, but contention and other timing affects
among the processors will determine when the request
completes [3].

 In Table 1 the configuration of simulated system is
proposed. This configuration contains number of cores,
memory hierarchy arrangement and network protocols. The
simulator provides CPU cores with memory hierarchy and a
profiler which is implemented to give us access to statistical
information of operations. To evaluate the system, we used
PARSEC 2.0. In PARSEC there are about 13 programs, and
among these programs, simulation is done under only 11 of
them because of availability of checkpoints and analyze of data
has been done through implementing a customized profile
which help us to count number of issued prefetches and cache
misses [4].

Core model PowerPC Simple

Number of Cores 16

Private I/D L1$ 32KB, 4-way, LRU

Shared L2 per bank 1024KB, 16-way, LRU

Cache block size 64 Bytes

Cache Coherence Protocol MOESI

Network topology MESH
Table 1. The Most important configurations of simulation.

B. RPT data structure

RPT is the most important part of data prefetching, so we
designed an RPT data structure which holds data access pattern
of load/store instructions. Each entry of this table contains a tag
related to the instruction address, field to record the memory
operand address and its stride and a state transition field. In
code 1, the code related to our data structure which can be find
in file “ruby/system/BasicReferencePredictor.h” is shown

01 RPT_Entry {
02 public:
03 Address PC;
04 Address prev_addr;
05 unsigned long stride;
06 EntryState state;
07 };
08 map< Address, RPT_Entry* > _rpt;

Code. 1. Basic RPT data Structure

In line 03 Address PC is defined which is responsible of
storing tag of each instruction. In 04 we defined the last address
that was referenced when the PC reach that instruction as
prev_addr. Line 05 represent the difference between the last
two addresses that were generated and 06 line is holding state
and transitions to prevent from false prefetching. So when PC
decodes a load/store instruction, a check is made to see if there
is an entry corresponding to the instruction in RPT. If there is
according to state of that entry prefetching would be issued and
if not it would enter it in table with state of init. State of each
entry is implemented by EntryState data structure which is
shown below in Code 2.

01 enum EntryState {
02 INITIAL,
03 TRANSIENT,
04 STEADY,
05 NOPREDICTION
06 };

Code. 2. Data structure of EntryState

In correlated design there is a difference because it should
keep track of two nested loop levels and for each loop RPT
entry is using the basic RPT data structure. So for
implementing an extended RPT for correlated design we used
the previous data structure and made a new data structures
which is shown in code 3. Correlated codes are located in
“ruby/system/CorrelatedReferencePredictor.h”.

01 class RPT_Entry_Ext {
02 public:
03 RPT_Entry outer_branch;
04 RPT_Entry inner_branch;
05 BranchRegState branch_reg;
06 };

Code. 3. Basic RPT data Structure

As it's shown for each outer branch and inner branch a
RPT_Entry is defined and for each entry a two bit branch
register is used which is called branch_reg to keep track of
loops to see if inner or outer loop should be considered for
issuing prefetching. This two-bit branch register is
implemented as a data structure which is shown below in Code
4.

01 enum BranchRegState {
02 OUTER_TAKEN_INNER_NOTTAKEN, // 10
03 OUTER_TAKEN_INNER_TAKEN, // 11
04 OUTER_NOTTAKEN_INNER_NOTTAKEN, // 00

05 OUTER_NOTTAKEN_INNER_TAKEN // 01
06 };

Code. 4. Data Structure of two bit branch register named BranchRegState

C. Detecting load/store instruction

One thing that is important here is how to detect that an

instruction is a load/store instruction. To lookup or add entry

into RPT first of all we should detect load/store instructions.

In “ruby/system/Sequencer.C” there is a function which is

named tryCacheAccess and by this function we can capture

the cache access operation. Thus, full address, cache line

address and PC of the cache request message – CacheMsg –

can be obtained. By making an object of CacheMsg class

functions of getAddress(), getProgramCounter() and

line_address() can be used to get more information about

cache request. For both designs, basic and correlated, the way

we detect load/store instruction is the same.

D. Checking entry of RPT

In our design, we use program counter to index the RPT

entry. As shown in Code. 1 line 08 there is a map between PC

and RPT entry. Thus, to see if an entry exist or not, we use

“RPT_ENTRY* an_entry= _rpt[PC];” if corresponding entry

is there, we access the recorded referenced pattern. If not we

initialize an entry by using code shown in code 5.
01 _rpt_entry = new RPT_Entry();

02 _rpt_entry->PC = PC;

03 _rpt_entry->prev_addr = full_addr;

04 _rpt_entry->stride = 0;

05 _rpt_entry->state = INITIAL;

06 _rpt.insert(makepair(PC,_rpt_entry));
Code 5. adding a new entry into prediction reference table

In correlated design there is a small difference that is

related to branch shift register and data structure of extended

rpt. The following Code 6 indicates the code that is used to

initialize a RPT entry in correlated design.

01 RPT_Entry_Ext* m_rpt_entry = new RPT_Entry_Ext();
02 m_rpt_entry->outer_branch.PC = PC;
03 m_rpt_entry->inner_branch.PC = PC;
04 m_rpt_entry->outer_branch.prev_addr = full_addr;
05 m_rpt_entry->outer_branch.stride = 0;
06 m_rpt_entry->outer_branch.state = INITIAL;
07 m_rpt_entry->inner_branch.prev_addr = full_addr;
08 m_rpt_entry->inner_branch.stride = 0;
09 m_rpt_entry->inner_branch.state = INITIAL;
10 m_rpt_entry->branch_reg=OUTER_TAKEN_INNER_NOTTAKEN;

11 m_rpt.insert(make_pair(PC,m_rpt_entry));
Code 6. Adding a new entry into prediction reference table in correlated

In the next iteration when PC reach a load/store instruction

which is already in RPT the thing that is important is to

determine if the reference for the next iteration is predictable

or not.

E. Predicting reference for the next iteration

 After finding an entry in RPT we should be sure that

the reference is predictable. This algorithm should work

according to state transition of RPT table entires. First we

should check the entry of PC by “_rpt_entry = _rpt[PC];”

then we use code shown in code 7. This code is used in

basic design.

01 if(!_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == INITIAL)){

02 _rpt_entry->prev_addr = full_addr;

03 _rpt_entry->stride = full_addr.getAddress()-_rpt_entry-

>prev_addr.getAddress();

04 _rpt_entry->state = TRANSIENT;}

05 else if (_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == INITIAL ||

_rpt_entry->state == TRANSIENT || _rpt_entry->state == STEADY)){

06 _rpt_entry->prev_addr = full_addr;

07 _rpt_entry->state = STEADY;}

08 else if(!_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == STEADY)){

09 _rpt_entry->prev_addr = full_addr;

10 _rpt_entry->state == INITIAL;}

11 else if(!_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == TRANSIENT)){

12 _rpt_entry->prev_addr = full_addr;

13 _rpt_entry->stride = full_addr.getAddress() - _rpt_entry-

>prev_addr.getAddress();

14 _ rpt_entry->state = NOPREDICTION;}

15 else if(_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == NOPREDICTION)){

16 _rpt_entry->prev_addr = full_addr;

17 _rpt_entry->state = TRANSIENT;}

18 else if(!_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == NOPREDICTION)){

19 _rpt_entry->prev_addr = full_addr;}
Code 7. Predicting reference for an entry in RPT

In correlated design there is a two bit shift register which

plays a key role in predicting the reference because it will

decide that if outer loop or inner loop is going to be used.

Code 8 shown implemented code in correlated for predicting

reference.
01 void CorrelatedReferencePrediction::updateRPT(const Address& PC, const

Address& full_addr, Branch brn){
02 if(brn == OUTER)
03 updateRPTBasic(&(m_rpt[PC]->outer_branch), full_addr);
04 else
05 updateRPTBasic(&(m_rpt[PC]->inner_branch), full_addr);}
06 void CorrelatedReferencePrediction::updateRPTBasic(RPT_Entry* m_rpt_entry,

const Address& full_addr){
07 if(!_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state == INITIAL){
08 m_rpt_entry->prev_addr = full_addr;
09 m_rpt_entry->stride = full_addr.getAddress() - m_rpt_entry-

>prev_addr.getAddress();
10 m_rpt_entry->state = TRANSIENT;}
11 else if (_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state ==

INITIAL || m_rpt_entry->state == TRANSIENT || m_rpt_entry->state == STEADY)){
12 m_rpt_entry->prev_addr = full_addr;
13 m_rpt_entry->state = STEADY;}
14 else if(!_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state ==

STEADY)){
15 m_rpt_entry->prev_addr = full_addr;
16 m_rpt_entry->state == INITIAL;}
17 else if(!_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state ==

TRANSIENT)){
18 m_rpt_entry->prev_addr = full_addr;
19 m_rpt_entry->stride = full_addr.getAddress() - m_rpt_entry-

>prev_addr.getAddress();
20 m_rpt_entry->state = NOPREDICTION;}
21 else if(_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state ==

NOPREDICTION)){
22 m_rpt_entry->prev_addr = full_addr;
23 m_rpt_entry->state = TRANSIENT;}
24 else if(!_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state ==

NOPREDICTION)){
25 m_rpt_entry->prev_addr = full_addr;}
26 }

Code 8. Predicting reference in Correlated design

As it shown in first function, the first decision is about

outer loop and inner loop, and base of that the outer RPT or

inner RPT in extended RPT should be updated. Then after

choosing the outer or inner table, it is just the same is basic

prediction.

F. Result from prefetching

The prefetching prediction scheme is reference pattern

table. RPT is a small memory indexed by the PCor low-order

bits of program counter of the memory access instruction. The

table contains two bits that say whether the prefetching was

recently taken or not. Here, in our design we view the size of

this prefetching prediction table as a design parameter.

With a limited size of RPT, we don’t know, in fact, if the

prefetching prediction is correct – it may have been put there

by another memory access instruction that has the same low

order address bits, since with limited size of RPT, low-order

bits of memory access instruction are used to index the an

entry of RPT. But this doesn’t matter. The prediction is a hint

that is assumed to be correct, and the prefetching begins in the

predicted direction. If the hint turns out to be wrong, the

prediction status is transitioned and stored back.

The accuracy using basic algorithm for integer programs,

which typically have higher branch frequencies, is lower than

for the loop-intensive scientific programs. As we try to exploit

more accuracy of prefetching, we can increase the size of the

RPT and improve the predictor structure. However, a RPT

table with size of 4K entries performs quite comparably to an

infinite size of RPT. Therefore, simply increasing the number

of entries without changing the predictor structure also has

little impact.

III. RESULTS

A. Number of misses per thousand of instructions

Let’s look at a single core where ideal hardware prefetching
supposed to omit all the misses by prefetching data early
enough or at least to decrease the average penalty due to the
cache miss as much as it can, while it keeps the number of
misses constant. But we know that implementation of
prefetching in non-ideal world cannot keep the number of
misses same as non-prefetching approach because obviously
bringing a new block to the finite-capacity cache means
evacuation of an existing block and this block might be still
needed by program and soon we have to load it to the cache
(prefetch it!) which force stalls to the memory. So in some
cases prefetch might increase the number of misses by
polluting the cache.

Our result of basic reference predictor (Figure 4) shows that
while we have up to 14 percent decrease of cache misses
(bodytrack), we have up to 7 percent incensement of miss per
thousand instructions (facesim) due to cache pollution effect of
prefetching. In general, the schemes work well for predicting
references in inner loops and less effective for those inner loops
with small bodies. We can conclude that effect of pollution due
to prefetching plus this fact that BRP cannot help small-body
loops at all, had more effect than prefetching’s advantage on
reduction of number of misses, consequently not only the
number of misses didn’t reduced, but also had a growth.

In Figure 5, correlated prefetching data has an absolutely
better performance since it reduced the number of misses per
thousand instructions in all of the benchmarks up to 73 percent
(stream cluster). This result shows absolute win of CRP against
BRP method since CRP gains of not only track of adjacent
accesses in inner loops but also of those correlated changes in
the loop level. Since branches in the inner loop are taken until
the last iteration to the next level up.

Fig. 4- Number of misses per thousand of instructions in BRP method

Fig. 5- Number of misses per thousand of instructions in CRP

B. Execution time

As we see in Figure 6, the execution time of BRP is
increased. It can be easily interpreted due to increase of cache
misses. Not only it didn’t help, but also made the execution
time worse. But the interesting result can be seen in Figure 7,
where while we had reduction of cache misses, still execution
time increased and prefetching didn’t help us.

When we want to interpret the execution time data we
should consider an essential point, the simulated CPU is
multicore. The total goal of prefetching is reducing the amount
of time, wasted in CPU, due to memory stalls by loading the
target cache block enough cycles before reaching the program
counter to associated load/store instruction. Obviously in a uni-
core system, with certain amount of miss rate, reduction of
memory stalls improves the speedup of system. But in a
multicore system there is no guarantee to have a reduction of
execution time by applying prefetching since adding
prefetching instructions means adding more memory
instructions and more memory instructions means more
communication between the cores in network due to data
request and data response of cache coherency protocols. Traffic
increase of a system reduces the whole network efficiency and
we know this fact that relation of average load rate and latency

is exponential. So no wander if we have too much higher
latency by increase of a small amount of traffic.

Streamcluster benchmark is a good example for this claim
that even CRP prefetching didn’t lead to speed up. We can
easily see that while huge amount of miss number reduction is
performed, still the execution time increased and this is because
of grows of traffic profound descent of network throughput.

Fig. 6-CRP Execution time

Fig. 7-CRP Execution time

During the implementation we found that in some cases we
can prevent from ineffective prefetching instructions. Assume
cases that we issue the address that we need to prefetch and that
address is in the same block as what we are right now, it means
that the current load/store instruction is hit and we issued the
request for next memory instruction. We should check the
stride and current address and see whether we go further than
existing block or not, and if not, we don’t need to issue a new
prefetching request. Although this prefetch instruction doesn’t
have significant effect on single core performance but in
multicore we expect more effect by reducing the amount of
communication.

IV. CONCLUSION

In this project we implemented and evaluated the design for
hardware based prefetching scheme, which is presented by
“Effective Hardware-Based Data Prefetching for High-
Performance Processor”. The purpose of this prefetching
mechanism is to reduce cache misses which would lead the
increase of CPI. The basic idea behind this mechanism is to
predict next data address that will be referenced by next
load/store instruction. In order to do this, this design uses a
Reference Prediction Table to keep track of past data access
pattern. We have applied this design into a cycle-accurate
simulator- GEMS. We run the simulation and the results show
that basic prefetching schema increases the number of misses
in the program by polluting the cache and this fact that it
cannot help small-body loops. Also results show that the CRP
schema can decrease the number of misses by taking to account
the correlation between inner and outer loops.

In the other hand, observation showed that not only BRP
cannot enhance efficiency, but also it make the execution time
longer by increasing the number of misses. This observation

showed that even CRP which decreases the number of misses
cannot be helpful when we are using it in a multicore network,
because prefetching force a communication overhead to
network which decreases the throughput of network
exponentially.

REFERENCES

[1] Tien-Fu Chen; Jean-Loup Baer; , "Effective hardware-based data

prefetching for high-performance processors," Computers, IEEE
Transactions on , vol.44, no.5, pp.609-623, May 1995

[2] Milo M. K; Martin, Daniel J.; Sorin, Bradford M.; Beckmann, Michael
R.; Marty, Min Xu,; Alaa R.; Alameldeen, Kevin E.; Moor, Mark D.;
Hill, and David A. Wood, “Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset”, Computer Architecture
News Volume 33 Issue 4, pp 92-99, November 2005

[3] Magnusson, P.S.; Christensson, M.; Eskilson, J.; Forsgren, D.; Hallberg,
G.; Hogberg, J.; Larsson, F.; Moestedt, A.; Werner, B.; , "Simics: A full
system simulation platform," Computer , vol.35, no.2, pp.50-58, Feb
2002

[4] Bienia, C.; Kai Li; , "Fidelity and scaling of the PARSEC benchmark
inputs," Workload Characterization (IISWC), 2010 IEEE International
Symposium on , vol., no., pp.1-10, 2-4 Dec. 2010

