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Abstract— Due to progress pace of processors performance which 

is higher than memory latency, need of functions which help to 

reduce this gap is increasing every day. Hardware-Based data 

prefetching is one of the approaches to make this gap smaller 

than before. We decided to have a closer look at basic and 

correlated prefetching and analyze how they will improve 

performance in memory latency. Basic prefetching method tries 

to provide prefetching by taking into account adjacent data 

access by storing the strides and previous address while the 

correlated approach tries to take advantage of not only the 

adjacent accesses but also of those correlated changes in the outer 

loop level. 

In this paper, implementation and analyze of simulation in 

GEMS–General Execution-driven Multiprocessor Simulator- are 

taken into consideration. We simulated a 16-core system and 

after modifying cache design in GEMS and adding Data 

Prefetching into it, we analyzed data by using PARSEC 2.0 

benchmark. 

By evaluation of the result we observed that basic prefetching 

scheme cannot be helpful on number of misses while correlated 

scheme can reduce it in most of the cases. But anyway on a 

multicore network neither have enhancement effect on speedup. 

There still huge amount of data which can be analyzed in future 

works.  

Keywords—Hardware Prefetching, Multicore Simulator, High 

Performance Processor 

I.  INTRODUCTION 

Memory latency and bandwidth have progressed over the 
last few years but at a much slower pace than processor 
performance. To bridge this gap using more efficiently of cache 
has been shown to be an effective way. Caches are used to 
reduce main memory access however it cannot decrease 
memory latency thus it is essential to find techniques to reduce 
memory access as much as possible. 

There are several techniques that would help in reducing 
memory access and among these techniques data prefetching is 
one of the techniques that ideally can make memory access 
latency to zero [3]. There are two approaches for data 
prefetching, software and hardware data prefetching. The 
former should be done by compiler and needs a static program 
analysis to detect regular data access pattern while the latter 
detects accesses with regular patterns and issues prefetches at 
run time. Both of these approaches have advantages and 
drawbacks. To demonstrate how they really work in this paper 
we will concentrate on hardware-based data prefetching [1]. 

Hardware-Based prefetching can be categorized into spatial 
and temporal. The former is where access to the current block 
the basis for the prefetch decision and the latter is where 
lookahead decoding of the instruction stream is implied. There 
are three approach to hardware-based prefetching which are 
named, Basic, Lookahead and Correlated. The basis for the 
three designs is an RPT - Reference Predication Table - that 
holds data access patterns of load/store instructions and it is 
organized as an instruction cache. In this paper our 
concentration is on implementing basic and correlated design. 

The basic idea of reference predication is to predict future 
references based on history for the same memory access 
instruction. When PC – program counter – detects a load/store, 
there would be a check in RPT to see if there is an entry 
corresponding to the instruction or not. If not, it would be 
entered in the table. If it is there and the reference for the next 
iteration is predictable a prefetch is issued. In the basic scheme 
only PC and RPT are involved. As shown in figure 1 RPT and 
it's states are illustrated [1]. 

 

Fig. 1. Reference Predication 

In basic design, reference predication is based on the 
regularity between adjacent data accesses. The key idea behind 
correlated reference prediction is to keep track not only of 
those adjacent accesses in inner loop, but also of those 
correlated by changes in the loop level. Since branches in the 
inner loop are taken until the last iteration, a not-taken branch 
will trigger the correlation to the next level up. By adding a 
shift register to record the outcome of the last branches and an 
extended RTP with separate fields for computing the strides of 
the various correlated accesses correlated design is 



implemented. But to avoid prefetching too far in advance 
correlation in two-level nested loops is a limitation in this 
design. Figure 2 shows extended RPT which is used in 
correlated design.  

In this paper we will focus on these two designs and 
implement them. Implementation has been done by GEMS 
simulation by adding our customized file to a folder named 
“ruby/system”. The most common file is CS573Prefetching.h 
which is a header file that contains common data structures. 
Then there are four files that implemented basic prefetching 
algorithm and correlated mechanism. For basic design 
BasicReferencePredictor.h, BasicReferencePredictor.C and for 
correlated design two files, CorrelatedReferencePredictor.h, 
CorrelatedReferencePredictor.C, are the files we implemented. 
In section II design and implementation of these files and 
related function are described more. 

 

Fig. 2. Correlated RPT 

The new cache design is simulated through SIMICS[4] and 
PARSEC 2.0 benchmark to get metrics and analyze them. In a 
configuration file which is used by SIMICS we configured 
chips, caches and memories. In GEMS configuration file we 
described number of cores, size of L1 cache, size and number 
of L2 caches and interconnection network. To analyze data the 
metrics we need number of issued prefetches and cache misses. 
To count these numbers in our simulation we implemented a 
customized profile under “ruby/profiler” with Profile.c and 
Profile.h files. These two files help us to print number of issued 
prefetches and cache misses in each core after of each 
benchmark program. In section III these analysis and graphs 
are shown and described more. 

II. DESIGN 

A. GEMS Structure and  Simulation Configurations 

As Figure 3 shows, the heart of GEMS is the Ruby memory 
system simulator. As illustrated in Figure 3, GEMS provides 
multiple drivers that can serve as a source of memory operation 
requests to Ruby [2]. 

Ruby is a simulator of a multiprocessor memory system 
that models: caches, cache controllers, system interconnect 
memory controllers, and banks of main memory. Ruby 
combines hard coded timing simulation for components such as 
interconnection network which are independent of the cache 
coherence protocol with the ability to specify the protocol-
dependent components such as cache controller in a domain-

specific language called SLICC (Specification Language for 
Implementing Cache Coherence). SLICC is syntactically 
similar to C or C++, but it is intentionally limited to constrain 
the specification to hardware-like structures. For example, no 
local variables or loops are allowed in the language. 

 

Fig. 3. Ruby’s Structure and its drivers 

One of the drivers on Ruby is SIMICS, which uses 
SIMICS’ functional simulator to approximate a simple in-order 
processor with no pipeline stalls. SIMICS passes all load, store, 
and instruction fetch requests to Ruby, which performs the first 
level cache access to determine if the operation hits or misses 
in the primary cache. Ruby receives the requests and put them 
in a FIFO manner. On a hit, SIMICS continues executing 
instructions, switching between processors in a multiple 
processor setting. On a miss, Ruby stalls SIMICS’ request from 
the issuing processor, and then simulates the cache miss. So 
while the SIMICS is executing the benchmark in a multi core 
manner, ruby simulates the memory behavior to send SIMICS 
the stalls due to the memory.   Each processor can have only a 
single miss outstanding, but contention and other timing affects 
among the processors will determine when the request 
completes [3].  

 In Table 1 the configuration of simulated system is 
proposed. This configuration contains number of cores, 
memory hierarchy arrangement and network protocols. The 
simulator provides CPU cores with memory hierarchy and a 
profiler which is implemented to give us access to statistical 
information of operations. To evaluate the system, we used 
PARSEC 2.0. In PARSEC there are about 13 programs, and 
among these programs, simulation is done under only 11 of 
them because of availability of checkpoints and analyze of data 
has been done through implementing a customized profile 
which help us to count number of issued prefetches and cache 
misses [4].  

Core model PowerPC Simple 

Number of Cores 16 

Private I/D L1$ 32KB, 4-way, LRU 

Shared L2 per bank 1024KB, 16-way, LRU 

Cache block size 64 Bytes 

Cache Coherence Protocol MOESI 

Network topology MESH 
Table 1. The Most important configurations of simulation. 



 

B. RPT data structure 

RPT is the most important part of data prefetching, so we 
designed an RPT data structure which holds data access pattern 
of load/store instructions. Each entry of this table contains a tag 
related to the instruction address, field to record the memory 
operand address and its stride and a state transition field. In 
code 1, the code related to our data structure which can be find 
in file “ruby/system/BasicReferencePredictor.h” is shown  

01 RPT_Entry { 
02 public: 
03  Address PC;  
04  Address prev_addr; 
05  unsigned long stride; 
06  EntryState state; 
07 }; 
08 map< Address, RPT_Entry* > _rpt; 
 

Code. 1. Basic RPT data Structure 
 

In line 03 Address PC is defined which is responsible of 
storing tag of each instruction. In 04 we defined the last address 
that was referenced when the PC reach that instruction as 
prev_addr. Line 05 represent the difference between the last 
two addresses that were generated and 06 line is holding state 
and transitions to prevent from false prefetching. So when PC 
decodes a load/store instruction, a check is made to see if there 
is an entry corresponding to the instruction in RPT. If there is 
according to state of that entry prefetching would be issued and 
if not it would enter it in table with state of init. State of each 
entry is implemented by EntryState data structure which is 
shown below in Code 2. 

01 enum EntryState { 
02  INITIAL,  
03  TRANSIENT, 
04  STEADY, 
05  NOPREDICTION  
06 }; 

Code. 2. Data structure of EntryState 

In correlated design there is a difference because it should 
keep track of two nested loop levels and for each loop RPT 
entry is using the basic RPT data structure. So for 
implementing an extended RPT for correlated design we used 
the previous data structure and made a new data structures 
which is shown in code 3. Correlated codes are located in 
“ruby/system/CorrelatedReferencePredictor.h”. 

01 class RPT_Entry_Ext { 
02 public: 
03  RPT_Entry outer_branch; 
04  RPT_Entry inner_branch; 
05  BranchRegState branch_reg; 
06 }; 
 

Code. 3. Basic RPT data Structure 
 

As it's shown for each outer branch and inner branch a 
RPT_Entry is defined and for each entry a two bit branch 
register is used which is called branch_reg to keep track of 
loops to see if inner or outer loop should be considered for 
issuing prefetching. This two-bit branch register is 
implemented as a data structure which is shown below in Code 
4. 

01 enum BranchRegState { 
02  OUTER_TAKEN_INNER_NOTTAKEN, // 10 
03  OUTER_TAKEN_INNER_TAKEN, // 11 
04  OUTER_NOTTAKEN_INNER_NOTTAKEN, // 00 

05  OUTER_NOTTAKEN_INNER_TAKEN // 01 
06 }; 

Code. 4. Data Structure of two bit branch register named BranchRegState 

C. Detecting load/store instruction 

One thing that is important here is how to detect that an 

instruction is a load/store instruction. To lookup or add entry 

into RPT first of all we should detect load/store instructions. 

In “ruby/system/Sequencer.C” there is a function which is 

named tryCacheAccess and by this function we can capture 

the cache access operation. Thus, full address, cache line 

address and PC of the cache request message – CacheMsg – 

can be obtained. By making an object of CacheMsg class 

functions of getAddress(), getProgramCounter() and 

line_address() can be used to get more information about 

cache request. For both designs, basic and correlated, the way 

we detect load/store instruction is the same. 

D. Checking entry of RPT 

In our design, we use program counter to index the RPT 

entry. As shown in Code. 1 line 08 there is a map between PC 

and RPT entry. Thus, to see if an entry exist or not, we use 

“RPT_ENTRY* an_entry= _rpt[PC];” if corresponding entry 

is there, we access the recorded referenced pattern. If not we 

initialize an entry by using code shown in code 5. 
01 _rpt_entry = new RPT_Entry(); 

02 _rpt_entry->PC = PC; 

03 _rpt_entry->prev_addr = full_addr; 

04 _rpt_entry->stride = 0; 

05 _rpt_entry->state = INITIAL; 

06 _rpt.insert(makepair(PC,_rpt_entry)); 
Code 5. adding a new entry into prediction reference table 

 

In correlated design there is a small difference that is 

related to branch shift register and data structure of extended 

rpt. The following Code 6 indicates the code that is used to 

initialize a RPT entry in correlated design. 
 
01 RPT_Entry_Ext* m_rpt_entry = new RPT_Entry_Ext(); 
02 m_rpt_entry->outer_branch.PC = PC; 
03 m_rpt_entry->inner_branch.PC = PC; 
04 m_rpt_entry->outer_branch.prev_addr = full_addr; 
05 m_rpt_entry->outer_branch.stride = 0; 
06 m_rpt_entry->outer_branch.state = INITIAL; 
07 m_rpt_entry->inner_branch.prev_addr = full_addr; 
08 m_rpt_entry->inner_branch.stride = 0; 
09 m_rpt_entry->inner_branch.state = INITIAL; 
10 m_rpt_entry->branch_reg=OUTER_TAKEN_INNER_NOTTAKEN; 

11 m_rpt.insert(make_pair(PC,m_rpt_entry)); 
Code 6. Adding a new entry into prediction reference table in correlated  

 

In the next iteration when PC reach a load/store instruction 

which is already in RPT the thing that is important is to 

determine if the reference for the next iteration is predictable 

or not. 
 

E. Predicting reference for the next iteration 

  After finding an entry in RPT we should be sure that 

the reference is predictable. This algorithm should work 

according to state transition of RPT table entires. First we 

should check the entry of PC by “_rpt_entry = _rpt[PC];” 

then we use code shown in code 7. This code is used in  

basic design. 

01 if(!_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == INITIAL)){ 

02  _rpt_entry->prev_addr = full_addr; 



03  _rpt_entry->stride = full_addr.getAddress()-_rpt_entry-

>prev_addr.getAddress(); 

04  _rpt_entry->state = TRANSIENT;} 

05 else if (_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == INITIAL || 

_rpt_entry->state == TRANSIENT || _rpt_entry->state == STEADY )){ 

06  _rpt_entry->prev_addr = full_addr; 

07  _rpt_entry->state = STEADY;} 

08 else if(!_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == STEADY) ){ 

09  _rpt_entry->prev_addr = full_addr; 

10  _rpt_entry->state == INITIAL;} 

11 else if(!_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == TRANSIENT)){ 

12  _rpt_entry->prev_addr = full_addr; 

13  _rpt_entry->stride = full_addr.getAddress() - _rpt_entry-

>prev_addr.getAddress(); 

14  _ rpt_entry->state = NOPREDICTION;} 

15 else if(_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == NOPREDICTION)){ 

16  _rpt_entry->prev_addr = full_addr; 

17  _rpt_entry->state = TRANSIENT;} 

18 else if(!_isCorrect(PC,_rpt_entry) && (_rpt_entry->state == NOPREDICTION)){ 

19 _rpt_entry->prev_addr = full_addr;} 
Code 7. Predicting reference for an entry in RPT 

 

In correlated design there is a two bit shift register which 

plays a key role in predicting the reference because it will 

decide that if outer loop or inner loop is going to be used. 

Code 8 shown implemented code in correlated for predicting 

reference. 
01 void CorrelatedReferencePrediction::updateRPT(const Address& PC, const 

Address& full_addr, Branch brn){ 
02  if(brn == OUTER) 
03  updateRPTBasic(&(m_rpt[PC]->outer_branch), full_addr); 
04 else 
05  updateRPTBasic(&(m_rpt[PC]->inner_branch), full_addr);} 
06 void CorrelatedReferencePrediction::updateRPTBasic(RPT_Entry* m_rpt_entry, 

const Address& full_addr){ 
07 if(!_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state == INITIAL){ 
08  m_rpt_entry->prev_addr = full_addr; 
09  m_rpt_entry->stride = full_addr.getAddress() - m_rpt_entry-

>prev_addr.getAddress(); 
10  m_rpt_entry->state = TRANSIENT;}  
11 else if (_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state == 

INITIAL || m_rpt_entry->state == TRANSIENT || m_rpt_entry->state == STEADY )){ 
12   m_rpt_entry->prev_addr = full_addr; 
13  m_rpt_entry->state = STEADY;} 
14 else if(!_isCorrect(full_addr,m_rpt_entry) &&  (m_rpt_entry->state == 

STEADY) ){ 
15  m_rpt_entry->prev_addr = full_addr; 
16  m_rpt_entry->state == INITIAL;} 
17 else if(!_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state == 

TRANSIENT)){ 
18  m_rpt_entry->prev_addr = full_addr; 
19  m_rpt_entry->stride = full_addr.getAddress() - m_rpt_entry-

>prev_addr.getAddress(); 
20  m_rpt_entry->state = NOPREDICTION;} 
21 else if(_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state == 

NOPREDICTION)){ 
22  m_rpt_entry->prev_addr = full_addr; 
23  m_rpt_entry->state = TRANSIENT;} 
24 else if(!_isCorrect(full_addr,m_rpt_entry) && (m_rpt_entry->state == 

NOPREDICTION)){ 
25  m_rpt_entry->prev_addr = full_addr;} 
26 } 

Code 8. Predicting reference in Correlated design 
 

As it shown in first function, the first decision is about 

outer loop and inner loop, and base of that the outer RPT or 

inner RPT in extended RPT should be updated. Then after 

choosing the outer or inner table, it is just the same is basic 

prediction. 

 

F. Result from prefetching 

The prefetching prediction scheme is reference pattern 

table. RPT is a small memory indexed by the PCor low-order 

bits of program counter of the memory access instruction. The 

table contains two bits that say whether the prefetching was 

recently taken or not. Here, in our design we view the size of 

this prefetching prediction table as a design parameter. 

With a limited size of RPT, we don’t know, in fact, if the 

prefetching prediction is correct – it may have been put there 

by another memory access instruction that has the same low 

order address bits, since with limited size of RPT, low-order 

bits of memory access instruction are used to index the an 

entry of RPT. But this doesn’t matter. The prediction is a hint 

that is assumed to be correct, and the prefetching begins in the 

predicted direction. If the hint turns out to be wrong, the 

prediction status is transitioned and stored back. 

The accuracy using basic algorithm for integer programs, 

which typically have higher branch frequencies, is lower than 

for the loop-intensive scientific programs. As we try to exploit 

more accuracy of prefetching, we can increase the size of the 

RPT and improve the predictor structure. However, a RPT 

table with size of 4K entries performs quite comparably to an 

infinite size of RPT. Therefore, simply increasing the number 

of entries without changing the predictor structure also has 

little impact. 

 

III. RESULTS 

A. Number of misses per thousand of instructions 

Let’s look at a single core where ideal hardware prefetching 
supposed to omit all the misses by prefetching data early 
enough or at least to decrease the average penalty due to the 
cache miss as much as it can, while it keeps the number of 
misses constant. But we know that implementation of 
prefetching in non-ideal world cannot keep the number of 
misses same as non-prefetching approach because obviously 
bringing a new block to the finite-capacity cache means 
evacuation of an existing block and this block might be still 
needed by program and soon we have to load it to the cache 
(prefetch it!) which force stalls to the memory. So in some 
cases prefetch might increase the number of misses by 
polluting the cache.  

Our result of basic reference predictor (Figure 4) shows that 
while we have up to 14 percent decrease of cache misses 
(bodytrack), we have up to 7 percent incensement of miss per 
thousand instructions (facesim) due to cache pollution effect of 
prefetching. In general, the schemes work well for predicting 
references in inner loops and less effective for those inner loops 
with small bodies. We can conclude that effect of pollution due 
to prefetching plus this fact that BRP cannot help small-body 
loops at all, had more effect than prefetching’s advantage on 
reduction of number of misses, consequently not only the 
number of misses didn’t reduced, but also  had a growth. 

In Figure 5, correlated prefetching data has an absolutely 
better performance since it reduced the number of misses per 
thousand instructions in all of the benchmarks up to 73 percent 
(stream cluster). This result shows absolute win of CRP against 
BRP method since CRP gains of not only track of adjacent 
accesses in inner loops but also of those correlated changes in 
the loop level. Since branches in the inner loop are taken until 
the last iteration to the next level up.  



 

Fig. 4- Number of misses per thousand of instructions in BRP method 

 

Fig. 5- Number of misses per thousand of instructions in CRP 

B. Execution time 

As we see in Figure 6, the execution time of BRP is 
increased. It can be easily interpreted due to increase of cache 
misses. Not only it didn’t help, but also made the execution 
time worse. But the interesting result can be seen in Figure 7, 
where while we had reduction of cache misses, still execution 
time increased and prefetching didn’t help us. 

When we want to interpret the execution time data we 
should consider an essential point, the simulated CPU is 
multicore. The total goal of prefetching is reducing the amount 
of time, wasted in CPU, due to memory stalls by loading the 
target cache block enough cycles before reaching the program 
counter to associated load/store instruction. Obviously in a uni-
core system, with certain amount of miss rate, reduction of 
memory stalls improves the speedup of system.  But in a 
multicore system there is no guarantee to have a reduction of 
execution time by applying prefetching since adding 
prefetching instructions means adding more memory 
instructions and more memory instructions means more 
communication between the cores in network due to data 
request and data response of cache coherency protocols. Traffic 
increase of a system reduces the whole network efficiency and 
we know this fact that relation of average load rate and latency 

is exponential. So no wander if we have too much higher 
latency by increase of a small amount of traffic. 

Streamcluster benchmark is a good example for this claim 
that even CRP prefetching didn’t lead to speed up. We can 
easily see that while huge amount of miss number reduction is 
performed, still the execution time increased and this is because 
of grows of traffic profound descent of network throughput. 

 

 
Fig. 6-CRP Execution time 
 

 
Fig. 7-CRP Execution time 

 

During the implementation we found that in some cases we 
can prevent from ineffective prefetching instructions. Assume 
cases that we issue the address that we need to prefetch and that 
address is in the same block as what we are right now, it means 
that the current load/store instruction is hit and we issued the 
request for next memory instruction. We should check the 
stride and current address and see whether we go further than 
existing block or not, and if not, we don’t need to issue a new 
prefetching request. Although this prefetch instruction doesn’t 
have significant effect on single core performance but in 
multicore we expect more effect by reducing the amount of 
communication. 

 

 



IV. CONCLUSION 

In this project we implemented and evaluated the design for 
hardware based prefetching scheme, which is presented by 
“Effective Hardware-Based Data Prefetching for High-
Performance Processor”. The purpose of this prefetching 
mechanism is to reduce cache misses which would lead the 
increase of CPI. The basic idea behind this mechanism is to 
predict next data address that will be referenced by next 
load/store instruction. In order to do this, this design uses a 
Reference Prediction Table to keep track of past data access 
pattern. We have applied this design into a cycle-accurate 
simulator- GEMS.  We run the simulation and the results show 
that basic prefetching schema increases the number of misses 
in the program by polluting the cache and this fact that it 
cannot help small-body loops. Also results show that the CRP 
schema can decrease the number of misses by taking to account 
the correlation between inner and outer loops. 

In the other hand, observation showed that not only BRP 
cannot enhance efficiency, but also it make the execution time 
longer by increasing the number of  misses. This observation 

showed that even CRP which decreases the number of misses 
cannot be helpful when we are using it in a multicore network, 
because prefetching force a communication overhead to 
network which decreases the throughput of network 
exponentially. 
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